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Abstract 

The Internet has revolutionized the way information is shared between 

geographically separated entities and has become the medium of choice for data sharing 

for both commercial and military units.  This reality seemingly simplifies network design, 

but characteristics of the underlying transport protocols require consideration when used 

in a high delay, high error environment, such as a satellite transmission architecture.  Of 

great interest are modifications to the Transmission Control Protocol (TCP) that enhance 

TCP performance in these poor conditions.  Although extensive research has been 

conducted concerning TCP optimization, few have assessed the performance benefit a 

given modification can provide.  

The purpose of this study was to assess the throughput improvement afforded by 

the various TCP optimization techniques, with respect to a simulated geosynchronous 

satellite system, in order to provide a cost justification for the implementation of a given 

enhancement technique.  It was determined that each technique studied, which included 

the Space Communication Protocol Standard – Transport Protocol (SCPS-TP), window 

scale, selective acknowledgements (SACKs), and combinational use of the window scale 

and SACK mechanisms, provided varying levels of improvement as compared to a 

standard TCP implementation.   In terms of throughput, SCPS-TP provided the greatest 

overall improvement, with window scale and window scale/SACK techniques providing 

significant benefits at low levels of bit error rate (BER).  The SACK modification 

improved throughput performance at high levels of BER, but performed at levels 

comparable to standard TCP during scenarios with lower BER levels. 
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A COMPARATIVE ANALYSIS OF TRANSMISSION CONTROL PROTOCOL 

IMPROVEMENT TECHNIQUES OVER SPACE-BASED TRANSMISSION 

MEDIA 
 
 

I.  Introduction 

Background 

 
 Leasing bandwidth on commercial geostationary (GEO) satellites is a costly 

endeavor, with prices ranging up to $1.5M for an 8 Mbit/sec allocation per  year.  In 

2004, the Department of Defense (DoD) spent nearly $500M for commercial satellite 

transponder/channel leases (Dykewicz, 2005).  In addition, military supported 

constellations, particularly those spacecraft that are part of the Defense Satellite 

Communications System (DSCS) and Wideband Gapfiller programs (which currently or 

will support a majority of the United States military’s X-band communication 

requirements), require significant DoD funding to maintain required operational and 

maintenance levels.  As a result, military communication support entities, as a consumer 

of both commercial and military satellite systems, are continually seeking ways to 

efficiently utilize space-based communication bandwidth allocations in order to 

maximize return on investment.  Unfortunately, commonly used data communication 

network protocols, particularly the Transport Control Protocol (TCP) piece of 

TCP/Internet Protocol (TCP/IP) suite, have limited efficiency in a satellite-based 

transmission system.  This is primarily due to the negative relationship between satellite 

link traits (high latency and bit error rates) and congestion control algorithms employed 

by TCP to detect and react to transmission errors and faults.  To counter this paradigm 
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both military and commercial organizations have relied upon use of Performance 

Enhancing Proxies (PEPs) to maximize bandwidth usage. 

 PEPs have a relatively short history of use in US military operations.  The first 

large scale employment of these devices by the Department of Defense occurred during 

the initial stages of Operation IRAQI FREEDOM at the Landstuhl Standardized Tactical 

Entry Point (STEP) in Landstuhl, Germany.  STEP sites represent communication 

elements that provide deployed combat units access (typically via satellite or terrestrial 

mediums) to the Defense Information Systems Network (DISN) and DISN’s associated 

services (secure/non-secure Internet circuits, video teleconference circuits, messaging 

systems, secure/non-secure voice circuits, etc.).  During IRAQI FREEDOM, an 

agreement was reached between the STEP program manager, Joint Staff J6, and 5th 

Signal Command for the installation of 5th Signal Command provided Mentat SkyX PEPs 

at the Landstuhl STEP site in order to improve satellite bandwidth utilization between the 

STEP site and US Army V Corps’ Logistic Support Areas in Iraq and Kuwait.  Though 

the initial planning and installation phases of the supplied PEPs were somewhat 

problematic, the subsequent performance benefits of these devices provided a great bit of 

incentive by the STEP program office for the procurement of additional PEPs for 

installation at all 18 active STEP sites worldwide.   

 Procurement and installation of PEPs at STEP sites worldwide was rolled into the 

ongoing Enhanced STEP upgrade program.  Depending on the “size” (termed as either 

single or dual, which was typically based on the number of apertures available at each 

site) of a STEP site, the type and number of upgrades afforded to it varied.  In general, 

with regard to PEPs, a dual STEP site would receive 32 devices for use on the Non-
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secure Internet Protocol Router Network (NIPRNET) circuits and the Secure Internet 

Protocol Router Network circuits (SIPRNET) (64 devices total).  In contrast, a single 

STEP site would receive a total of 32 PEPs for use on both NIPRNET and SIPRNET 

circuits.  Though PEPs were viewed to be effective in mitigating TCP link degradations 

associated with satellite communications, the additional burden of support (training, 

maintenance, and operation) and the cost of acquisition for these devices proved to be a 

significant undertaking.   

 The average cost of a PEP procured by the STEP program was $3,000, with 

training (train the trainer program) costs varying between $10,000 and $15,000 per 

person.  Taking in consideration that 18 STEP sites were to be upgraded, with a 

minimum of 32 devices, as well as the training of at least 18 personnel, the cost for the 

PEP implementation of this magnitude could easily exceed $2M.  In addition, STEP sites 

were also expected to allocate a large amount of manpower in the reorganization of their 

sites to accommodate the rack space and power requirements of these devices.  Some 

STEP sites, such as Ramstein STEP (located at Ramstein Air Force Base, Germany) had 

severe site limitation both with power availability and physical space available.  In 

addition, STEP sites also needed to reevaluate their respective facility back-up power 

mechanisms; assessments would provide insight as to whether or not facility back-ups 

could have handled the additional load presented by the PEPs in the event of a power 

outage.  If the power back-up system could not handle the load, acquisitions would need 

to be made to further robust the system.   

 Due to the acquisition, installation, and training costs for PEPs it is not surprising 

that many organizations are researching techniques to incorporate in commonly 
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employed technologies (routers, satellite modems, etc.) to combat link performance 

issues and negate the need for another device to acquire, maintain, and operate.  Of 

particular interest is the use of selective acknowledgements (SACKs) and increases in the 

TCP window size, that have been incorporated in already released Cisco router 

Internetwork Operating System versions.  Since Cisco products represent the largest 

population of network devices used by military communication units, it is reasonable to 

assume that a significant cost savings (in terms of dollars and physical requirements) 

could be realized if SACKs and window scale techniques rival the performance benefits 

of a PEP system.   

Problem Statement 

 Though PEPs have been proven to provide measurable benefits with respect to 

TCP throughput in a high delay/error transmission environment, the cost of acquisition, 

needed support mechanisms, and facility requirements necessitate the need to find 

alternatives for organizations that cannot fund, support, or have the facility capacity 

required for PEP implementation.  Though these organizations cannot support a PEP 

solution, they may still have the need to maximize their respective transmission system 

throughput capabilities and, as such, require some type, or a combination, of TCP 

enhancement technique.  The research presented in this paper will investigate the 

performance benefits of SACKs and window scale strategies in a satellite transmission 

system and contrast these findings to those obtained from a PEP-enhanced solution.  

Through statistical analysis (Analysis of Variance, Tukey analysis, and descriptive 

statistics) observations can be made concerning the differences (if any) in performance 

(in terms of throughput) between the respective enhancement strategies. 
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Research Questions 

 Based on the problem identification of the previous section, it can be seen that a 

number of research questions must be formulated and answered in order to provide 

adequate information to military units concerning the performance gap (or lack thereof) 

between multiple types of TCP enhancement strategies.  The research questions for this 

study can be seen below. 

 

RQ1).  What is the performance benefit (in terms of throughput) of implementing 

a SACK enhancement to TCP when TCP is utilized over a satellite transmission 

system? 

 

RQ2).  What is the performance benefit of implementing a window scale 

modification to TCP when TCP is utilized over a satellite transmission system? 

 

RQ3).  What is the performance benefit of implementing both a SACK 

enhancement and a window scale modification to TCP when TCP is utilized over 

a satellite transmission system?  

 

RQ4).  What is the performance benefit of utilizing PEPs to improve TCP 

sessions that occur over a satellite transmission system? 
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RQ5).  Are there statistical differences between the respective TCP 

enhancements?  If so, how can costs (in terms of acquisition and support 

requirements) be expressed as a decision point for execution of a given TCP 

enhancement? 

Implications 

 The potential implications of this study, based on experimental findings, can 

allow military units to weigh the benefits of differing TCP enhancement techniques in 

order to select the methodology that best fits their transmission requirements.  Units who 

value minimization of equipment footprint (such as a combat communications element), 

may have limited funding, or are unwilling to support additional equipment may use this 

study to determine if performance provided by TCP enhancements, that can be 

implemented on already in-place equipment, can provide a suitable cost/benefit ratio.  On 

the other hand, these same units may use this study to provide justification for the 

additional cost (in terms of acquisition and support) in order to gain greater transmission 

performance afforded by a PEP-based solution.  

Scope 

 The scope of this research encompasses the use of TCP/IP-based services (such as 

voice-over-IP, IP-based video teleconferencing, Internet access, etc.) via GEO satellite 

transmission systems.  This type of communication system is commonly used by 

deployable military communication units, as well as fixed military installations (such as 

STEP/Teleport sites) that communicate with down range elements and other inter- and 

intra-theater fixed-based organizations.  In addition, this study also has applicability to 

commercial entities that transmit TCP/IP-based services through GEO satellite systems. 
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Limitations  

Access to satellite resources, such as access time on a Defense Satellite 

Communications System asset, would require a considerable amount of flexibility with 

respect to time and availability due to on-going military operations and operation at a 

research level of precedence.  Due to this fact, it will be necessary to simulate network 

traffic and the satellite environment in order to ascertain the benefits of various TCP 

enhancements.  Though a more manageable approach, it is fraught with limitations.  

Obviously, without use of an actual satellite system, it will be impossible to simulate all 

environmental factors.  In addition, not all of the equipment that is part of a military 

satellite transmission system (such as crypto gear, satellite modems, up/down converters, 

etc.) will be modeled and as a result, the research model may not adequately cover 

system idiosyncrasies (such as processing delay associated with multiplexing, 

cryptography equipment, etc.) encountered by real world transmission systems.  Though 

the research model may not be all encompassing, a majority of transmission factors will 

be represented and should provide a solid base of knowledge in which other factors can 

be added later to further robust this study and more accurately predict system outcomes. 

Document Overview 

 
 This chapter provided a brief background on the deficiencies of TCP in a high 

delay and error environment and covers some methods used to counter these deficiencies.  

Chapter One also presents numerous research questions, most of which revolves around 

comparing the effectiveness of TCP enhancement methods, of which one method requires 
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an external device whereas the other methods can be incorporated in many of the existing 

router/satellite-based communication topologies.  

 The remainder of the thesis is structured as follows.  Chapter Two provides a 

detailed literature review of peer reviewed journals, books, and military publications 

related to TCP mechanisms, TCP performance deficiencies when used over high delay 

and error environments, and various enhancement methodologies used to improve TCP 

performance in a satellite-based, network environment.  Chapter Three covers the 

experimental design and methodology.  Chapter Four will give a summary of findings 

from the experimentation and subsequent analysis.  Chapter Five will present the research 

conclusions and recommendations for further research. 
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II. Literature Review 

Chapter Overview 

 
 This chapter will present an overview of the TCP/IP protocol suite, to include the 

algorithms utilized to overcome network errors and congestion.  In addition, a review of 

TCP/IP performance impact variables, namely the satellite environment, transmission 

link BERs, and bandwidth asymmetries will be presented.  Next, mechanisms that can be 

incorporated in the TCP algorithms (such as use of selective acknowledgements and an 

increased window size) to mitigate issues with propagation delay and high BER will be 

discussed.  Next, the use and benefits of performance enhancing proxies (PEP) will be 

presented.  Finally, the Space Communication Protocol Standard–Transport Protocol 

(SCPS-TP), used by many PEP manufactures, will be discussed.  

TCP/IP Overview 

IP represents the preferred method for the logical mapping of devices connected 

via the Internet.  IP is able to resolve the logical location of every device on the Internet 

through the assignment of a global IP address to network devices and with the utilization 

of network routing tables that record IP address assignments (Shaughnessy, 2000:81).  

Through this system, IP datagrams traveling through a network contain the necessary 

information (contained in the packet header) that allows IP to resolve the best path that 

must be taken in order to reach the intended network destination (Lammle, 2000:117).  IP 

is a connectionless protocol that contains no mechanism to ensure the delivery of a data 

packet (Held, 1999:452).  IP does, however, guarantee that data packets will not route 

indefinitely in a network through the use of a Time-to-Live (TTL) field in the packet 

header.  The TTL field contains the maximum time (based on a hop count, where 
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datagram passage through a router or other network node will reduce the TTL field by 

one; the maximum value the TTL field can be set to is 255) that a data packet can exist in 

a network (Feit, 1993:99; Held, 1999:465).  Once the TTL value is exceeded, the network 

discards the data packet (Feit, 1993:99; Held, 1999:465).  In order to guarantee the 

reliability of data packet delivery in a network, a secondary protocol, such as TCP, must 

be utilized. 

TCP is a connection-oriented protocol that validates transmission of data 

segments via a positive acknowledgement system (Feit, 1993:179; Postel, 1981:1).  When 

a networked computer transmits a data block, TCP breaks the block into segments and 

assigns each individual segment a sequence number (Feit, 1993:179; Postel, 1981:10).  A 

segment is defined as a grouping of a stream or multiple streams of eight binary digits.  

Segments can have variable lengths, with the maximum length (termed maximum 

segment size) agreed upon by the sender and receiver during the initial establishment of a 

TCP session (Feit, 1993:188; Postel, 1981:42).  The assignment of sequence numbers to 

segments enables the receiving end of the transmission to arrange segments back to the 

original order, enabling the reconstruction of the transmitted data block if packets are 

received out of the original order due transmission issues such as loss (and subsequent 

segment retransmission) or use of differing transmission paths due to network congestion 

(Lammle, 2000:107).  In addition, the receiver of a data transmission transmits an 

acknowledgment (ACK) to the sender that specifies which data segments have arrived.  

Each ACK contains the sequence number of the next anticipated segment of a data 

transmission (Allman, 1997:2).  Figure 1 provides an example of the ACK system 

behavior of TCP from the perspective of a receiver.   
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Figure 1.  TCP Acknowledgement Example 
 

 From the above graphic, the receiver verifies receipt of segment one with the 

transmission of an ACK that contains sequence number two.  The behavior repeats with 

the receipt of segment two, as the receiver transmits an ACK with sequence number 

three.  The receiver then receives segment four as opposed to the expected segment three.  

As a response, the receiver validates the receipt of segment four with an ACK containing 
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segment number three.  This behavior will continue until segment three has been 

received.  As can be seen in the example, segment three is received after segment five, 

and the receiver continues to transmit an ACK with the sequence number for the next 

expected segment.   

 The ACK system also ensures segment delivery via the inclusion of a retransmit 

timeout (RTO).  The RTO represents the amount of time the originator of a data block 

will wait for an ACK of a segment’s receipt before the segment will be retransmitted 

(Feit, 1993:200; Allman, 1997:2).  RTO can be calculated utilizing the equation 

(Jacobson and Karels, 1988: 6; Karn and Partridge, 1987:2): 

RTOi = β x SRTTi   (1) 

where 

RTOi = Retransmission Timeout  

β = constant between 0 and 1 that is selected to     

mitigate the chances of the packet RTT 

exceeding the value of RTOi 

SRTTi = smoothed round trip estimate of average 

round trip times of sampled packets 

In addition, SRTTi can be calculated as (Karn and Partridge, 1987:2): 

SRTTi+1 = (α x SRTTi) + (1 -  α) x si (2) 

where 

SRTTi+1 = new value for the RTT estimate 
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  α = constant between 0 and 1 that determines the 

speed to which SRTT adapts network 

changes 

si = RTT samples 

In the case of a transmission timeout (in other words, an ACK has not been received in 

the expected timeframe), the above equations are not used to estimate either RTO or RTT 

(as no new sample is available for use in estimation) and instead an arbitrary factor is 

used to increase RTO (some implementations double the previous value of RTO, others 

use a table of values to steadily increase RTO in the event of subsequent timeouts) (Karn 

and Partridge, 1987:3).  This method of increasing RTO due to timeouts is known as 

back-off and this technique will continued to be used for RTO calculation until packet 

losses cease in occurrence (Karn and Partridge, 1987:3).  Once the network is stabilized, 

RTO values will revert to estimates determined by equations (1) and (2).  Finally, a 

sender will also retransmit a segment if a duplicate ACK is received for a given segment 

(Broyles, 1999:7).   

TCP is also known as a sliding window protocol, which is a property that allows a 

sender to transmit a finite amount of segments before receiving an ACK from the receiver 

(Miller, 1998:2).  In essence, the TCP window represents the amount of unacknowledged 

segments that can be in flight in a network at a given time.  The sliding piece of the 

protocol is activated upon receipt of ACKs; receipt of ACKs allows the window to slide, 

meaning that additional segments can now be transmitted (Allman, 1997: 3).  This 

property allows incremental growth in the number of segments allowed to transit a given 

network.  Without this type of control, the amount of segments injected into a network 
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could overwhelm available bandwidth allocations and result in the congestive collapse of 

the network (Floyd and Fall, 1999:459).   

The maximum window size TCP allows a network device to advertise is 64 

kilobytes (Allman, 1997:3; Allman, Hayes, Kruse, and Ostermann, 1997:3).  Window 

sizes are negotiated between a sender and receiver during synchronization of a TCP 

session and are typically sized to allow an appropriate level of segment flow that will not 

cause network congestion or will allow flows that could exceed network bandwidth 

allocations.  In addition to window strategies, TCP also utilizes four algorithms to 

mitigate network congestion that include Slow Start, Congestion Avoidance, Fast 

Retransmit, and Fast Recovery (Allman, Paxson, and Stevens, 1999:1).  These algorithms 

are used to detect network congestion and to reduce the transmission rate of a network 

device to a level that can be supported by the available network resources.   

TCP Congestion Control Algorithms 

Congestion control algorithms utilize two state variables, Congestion Window 

(CWND) and Slow Start Threshold (SSTHRESH) (Allman, et al., 1999:8).  CWND 

represents the amount of segments a device can inject into a network before receiving an 

ACK (Allman, Paxson, and Stevens, 1999:2).  CWND will also be limited to the size of 

the advertised window of a receiver (Allman, et al., 1999:8).  The CWND value can be 

increased or decreased based on the perceived amount of network congestion.  

SSTHRESH is used to determine what algorithm will be used to increase CWND 

(Allman, et al., 1999:8).  If CWND is less than SSTHRESH, the Slow Start algorithm is 

used (Allman, et al., 1999:8).  If CWND is greater than or equal to SSTHRESH, the 

congestion avoidance algorithm is used (Allman, et al., 1999:8).  The initial SSTHRESH 
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value will typically be the receiver advertised window size (Allman, Paxson and Stevens, 

1999:4).  The SSTHRESH value can also be set at the level in which network congestion 

was detected (Allman, et. al., 1999:9).  While these algorithms are useful in preventing 

the congestive failure of a network, they also have a negative impact on the performance 

of TCP over a large delay or high bit-error rate network commonly encountered in a 

satellite-based transmission environment (Allman, 1997:3, Henderson and Katz, 

1999:326). 

Slow Start is the mechanism TCP utilizes to establish a network connection or 

restart a connection after a RTO has occurred (Allman, et al., 1999:9).  The purpose of 

Slow Start is to ensure a network device does not transmit too large of a burst of data 

segments that could overwhelm the available network resources (Allman, et al., 1999:9).  

The Slow Start algorithm begins by initially setting the value for CWND to one segment 

and SSTHRESH to the receiver’s advertised window size (Allman, et al., 1999:9).  This 

limits the network device to the transmission of one segment and to wait for an ACK of 

receipt of that segment (Allman, et al., 1999:9; Carroll, 2004:7).  For each ACK the 

transmitting device receives, the CWND is increased by one segment (Allman, et al., 

1999:9).  For example, after receipt of the initial ACK, the transmitting device will be 

able to send two segments (CWND equals two).  After receipt of an ACK for each of the 

two segments, the sender will be able to send four segments (CWND equals four).  This 

behavior represents an exponential growth pattern and will continue until CWND equals 

or exceeds the value of SSTHRESH or a segment loss is detected (Carroll, 2004:7).  It is 

important to note that if the RTO expires for a transmitted segment, TCP will initiate the 

retransmission of the segment and will perceive the RTO expiration as a sign of network 
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congestion (Allman, et al., 1999:10; Broyles, 1999:9).  As a response to the perceived 

network congestion, TCP will reduce the transmission rate of a device by cutting the 

SSTHRESH value to half of the current CWND value and reset the CWND value to one, 

starting the Slow Start mechanism anew (Allman, 1997:4).  When CWND equals or 

exceeds SSTHRESH, however, the Congestion Avoidance algorithm is used to further 

increase the size of CWND (Allman, et al., 1999:9).        

The Congestion Avoidance algorithm is a more conservative measure to increase 

CWND than Slow Start and is primarily used to slowly probe the network for additional 

capacity (Allman, et al., 1999:9; Hoe, 1996:2).  Congestion Avoidance only allows an 

increase in value of CWND if all segments transmitted in a window have a corresponding 

ACK, making the growth rate of CWND linear in nature (Carroll, 2004:7; Hoe, 1996:2).  

Mathematically, the congestion window will be increased by 1/CWND for each segment 

that is ACKed during use of the Congestion Avoidance algorithm (Carroll, 2004:7; 

Padhye, Firoiu, Towsley, and Kurose, 1998:3).  From this property, CWND will be 

increased by roughly one segment for every round-trip time (Allman, 1997:5).   

The Fast Retransmit and Fast Recovery Algorithms work in tandem to mitigate 

the time it takes a TCP session to return to the maximum transmission level of segments 

when packet loss or congestion is detected through the receipt of duplicate ACKs 

(Allman, et al., 1999:11).  Under normal circumstances during a TCP connection, 

segments are assumed lost and are retransmitted when RTO occurs.  Unfortunately, 

needless retransmissions of segments can occur despite successful transmission of a 

segment because the corresponding ACK is still traveling through the network or the 

segment waits for processing in a receiver’s buffer when RTO expires (Broyles, 
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1999:10).  To counteract this, Fast Retransmit provides a way to retransmit a packet prior 

to RTO occurring by assuming that three duplicate ACKs correspond with a lost segment 

(Allman, 1997:5; Padhye, Firoiu, Towsley, and Kurose, 1998:3).  In a simplified example 

in Figure 2, it can be seen that three identical ACKs cause the sender to retransmit 

segment three (keep in mind, the behavior outlined in Figure 2 does not exactly mimic a 

TCP session, but instead is for clarity in explaining Fast Retransmit). 
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Figure 2.  Fast Retransmit Example 
 

When a segment is retransmitted by the Fast Retransmit protocol, the Fast Recovery 

Algorithm is activated in response to a perceived congestion of the network.  The Fast 

Recovery Algorithm reduces the CWND to half the current value and resets the 

SSTHRESH value to the new value of CWND (Allman, 1997:6; Krishnan et al., 

2004:344).  The CWND is then artificially increased to match the number of duplicate 
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ACKs, under the assumption that duplicate ACKs indicate a lost segment that is no 

longer in the network and therefore additional network capacity exists (Broyles, 

1999:10).  Depending on the size of CWND, additional segments may be transmitted, 

however, the receipt of a non-duplicate ACK will reduce CWND to the value of 

SSTHRESH and will cause the start of the Congestion Avoidance algorithm (Allman, 

1997:6).   

Satellite Environment 

 
 The types of orbits utilized by constellations of satellite systems orbiting the earth 

include low earth orbit (LEO), highly elliptical orbit (HEO), and geosynchronous orbit 

(GEO).  GEO satellites, particularly those that are part of the Defense Satellite 

Communications Systems constellations, are the most commonly utilized communication 

assets for deployed US military forces.   Due to this fact, GEO satellites represent the 

transmission medium of interest for this paper.  GEO satellites orbit at an elevation of 

approximately 36,000 kilometers above the surface of the earth (Roddy, 2001:14).  At 

this elevation over the equator, satellites are able to achieve a speed that matches the 

rotational velocity of earth.  This condition enables GEO satellites to remain stationary 

relative to a location on the equator, known as a subsatellite point.  Due to a GEO 

satellite’s high elevation and relatively stationary position, it is able to attain a coverage 

area of approximately ±75° latitude.  Three geostationary satellites (spaced apart by 120° 

longitude along the equator) could provide whole earth coverage.  For these reasons, 

GEO satellites have become a high demand asset during US military operations in areas 

with limited or no terrestrial telecommunications infrastructure, such as the Middle East.   
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As a result of a GEO satellite’s high elevation, lengthy propagation times occur 

for radio signals traveling the slant distance between an earth station and the satellite.  

Propagation delays can vary from 239.6 to 279 milliseconds (ms) for one “hop” (ground 

station to satellite to ground station), depending on the location of ground stations in a 

satellite’s spot beam (Allman, et. al., 1999:2).  From these figures it can be calculated that 

the Round Trip Time (RTT) for a message and a corresponding response between two 

ground stations communicating via a GEO satellite could take between 479.2 and 588 

ms.  The propagation delay times could be even greater, depending on the time required 

for signal processing by the satellite and satellite motion characteristics (such as those 

space assets that have a “figure eight” motion near the end of operational life) (Allman, et 

al., 1999:2; Henderson and Katz, 1999:327).   It will be shown later that this 

characteristic negatively impacts the throughput capability of a TCP-based connection. 

TCP Limitations in a Satellite Environment 

TCP’s limitations in a satellite environment can be generalized into two areas: 

algorithms used to increase the sliding window size and TCP throughput in a high delay 

environment.  The Slow Start and Congestion Avoidance algorithms, as outlined 

previously, determine the rate of size increase or decrease of the sliding window.  The 

steady-state behavior of TCP determines the maximum throughput capability based on 

factors of window size and RTT.  The time the Slow Start algorithm takes to reach a 

window size of W segments on a network with a given RTT (denoted by R) can be 

calculated as (Allman, 1997:7): 

SStime = Rlog2(W)  (3) 
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Assuming a GEO satellite link with a RTT of 570 ms, 256 byte segments, and a 

maximum advertised window size (64 Kilobytes that would result in 256 segments) it 

would take 4.56 seconds to increase CWND to the advertised window size.  In contrast, a 

terrestrial link with the same characteristics, but a RTT of 70 ms, would take 560 ms.  

These scenarios illustrate the potential waste in available bandwidth by TCP in a high 

delay environment when viewed in contrast to a low latency transmission medium. 

As mentioned previously, Congestion Avoidance is utilized by TCP to slowly 

probe a network for additional capacity.  The linear nature in which Congestion 

Avoidance increases CWND takes an exorbitant amount of time in a high loss or large 

delay transmission system.  For example, if a loss (such as the loss of a segment) occurs 

on a satellite-based transmission network, the value of CWND is reduced to half of the 

original value.  If 256 byte segments and a maximum window size were in use prior to 

the loss, the resulting new value for CWND would be 32 Kilobytes.  Under these 

conditions (assuming a RTT of 570 ms), Congestion Avoidance would take 72.96 

seconds to return CWND to the maximum window size.  In contrast, a terrestrial link 

with similar properties, but a RTT of 80 ms, would take only 10.24 seconds to reach the 

maximum window size under Congestion Avoidance.  This discrepancy in recovery time 

again highlights the potential waste of bandwidth utilizing TCP over high delay paths. 

TCP also experiences a bottleneck in throughput capability in high delay 

transmission systems.  Assuming a loss- and congestion-free network, the maximum 

throughput of TCP can be calculated as (Allman, 1997:10): 

MT = Receive Window Size/RTT  (4) 
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With a maximum window size of 64 Kilobytes and a satellite link with a RTT of 570 ms, 

the maximum throughput of a TCP connection would approximately be 114,977 bytes 

per second.  If the satellite link operated at a T1 (1.536 Mbits/second with removal of 8 

Mbits for overhead) rate on a transponder, the link would only be 60% utilized (114,977 

bytes/192,000 bytes).  TCP would again fail to fully utilize the available bandwidth of the 

satellite transmission path. 

Bit Error Rate (BER) Effects on TCP 

 
 When relying upon satellite transmission systems for communications, it is 

understood that BER will be significantly higher than those experienced with terrestrial 

transmission systems due to the atmospheric conditions that radio frequency signals must 

propagate through (Allman, et al., 1999:4; Roddy, 2001:444).  Errors that occur due to 

this paradigm will cause the execution of the congestion control protocols of TCP, as 

TCP assumes any packet loss is due to network congestion (Abdelmoumen, Malli, and 

Barakat, 2004:3994; Caceres and Iftode, 1995:858; Krishnan et al., 2004:343; Ghani and 

Dixit, 1999:64; Miller, 1998:1).  As a result, growth of CWND will be limited and will 

affect the throughput of a TCP session (Allman, et al., 1999:4; Narasimhan, Kruse, 

Ostermann, and Allman, 2004:1; Ghani and Dixit, 1999:64; Miller, 1998:1).   

TCP Performance Enhancement Techniques 

 
There are multiple strategies to enhance the performance of TCP over satellite 

links.  The window scale option is one strategy in which a modification is added to the 

TCP header.  During the initial synchronization of a TCP session, “SYN” segments are 

transmitted between sender and receiver.  The SYN segment purpose is to establish the 

initial parameters (window sizes, segment lengths, etc.) for a TCP session.  Adding the 
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window scale option to the SYN segment would allow a sender to ascertain the available 

buffer size for a receiver.  Based on the buffer size available and “agreement” between 

sender and receiver, a scale factor can be added to the TCP session parameters that could 

increase the maximum window size up to twice the value found in a standard TCP 

session (Jacobson and Braden, 1988:2; Mathis, et al., 1996:8).  This relatively simple 

solution would allow increased bandwidth utilization for high delay paths based on the 

maximum throughput equation discussed previously. 

Another option to improve TCP performance would be the use of selective 

acknowledgements (SACKs).  SACKs allow receivers in a TCP session to communicate 

the success of transmission of every received segment (Jacobson and Braden, 1988:2).  

By bypassing the cumulative ACK system of standard TCP, senders would no longer 

need to wait for multiple RTT durations to determine what segments have been lost and 

will instead be able to retransmit specific lost segments in one or two RTT cycles (Ghani 

and Dixit, 1999:67-68; Mathis, et al., 1996:2).  The SACK strategy mitigates the 

occurrence of RTO and results in the avoidance of activating TCP congestion control 

mechanisms that hinder throughput. 

Performance Enhancing Proxies (PEP) Overview 

 
 PEPs can exist and act at any protocol layer(s), however, PEPs that are used to 

combat TCP degradation due to link errors or excessive latency are typically 

implemented at the application and transport layers (Border, et al., 2001:4).  For the 

purposes of this research, the focus will be on PEPs utilized at the transport layer, as they 

are commonly utilized to enhance TCP performance (Border, et al., 2001:5).  Transport 

layer PEPs make use of multiple methods to influence TCP behavior.  These methods 
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include modifying ACK spacing (to prevent their accumulation and subsequent 

“bunching” that can inflate RTO occurrences) and the generation/transmission of ACKs 

to local devices in order to minimize the time need to reach the full window size and, as a 

result, maximize throughput (Border, et al., 2001:5).  It should be mentioned that not all 

PEPs utilize a standard set of algorithms/protocols to manipulate TCP sessions.  Some 

PEPs, such as those produced by Mentat Inc., have made use of proprietary protocols to 

improve TCP performance.  Other manufacturers have opted to use an open standard 

protocol known as SCPS-TP.  Regardless of the underlying protocols, PEPs will typically 

be geared towards improving TCP through manipulation of the window size and ACK 

schema (in essence minimizing or eliminating the occurrence of the congestion control 

algorithms) through the modification of on-going TCP session or by splitting the TCP 

session (Ehsan, Liu, and Ragland, 2003: 514).  TCP session splitting means that the PEPs 

on either side of the link will negotiate TCP sessions with local area network entities; 

TCP actions, such as the ACK system, will be handled by the PEP on behalf of the 

sender/receiver (depending on which side of the link the PEP resides) (Ehsan, Liu, and 

Ragland, 2003: 514).  This allows a session’s window to grow more quickly, as the ACK 

response is now handled locally and does not require ACK transmission over the satellite 

path (Ehsan, Liu, Ragland, 2003: 514).  PEPs that split TCP sessions will typically 

provide segment (and requisite ACK results) information to each other in order to 

monitor and predict network loss/congestion and to allow the appropriate TCP response 

to network degradations.   
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SCPS-TP Overview 

 
SCPS-TP was a joint development effort between the MITRE Corporation, MCI, 

NASA, and the DoD (Durst, Miller, and Travis, 1997:389).  As with most TCP 

improvement efforts, SCPS-TP was created to overcome limitations associated with high 

delay and error environments; of particular interest were those transmission systems that 

made use of space-based assets and suffered from such environmental limitations.  To 

improve TCP performance, SCPS-TP makes use of a number of techniques: header 

compression, Selective Negative Acknowledgements (SNACKs), TCP Timestamps, 

window scale modifications, and the TCP Vegas congestion control algorithms (Durst, 

Miller, and Travis, 1997:391-396). 

Header Compression 

 The SCPS-TP standard seeks to maximize the amount/use of available bandwidth 

in a given transmission system.  One way SCPS-TP accomplishes this is through use of a 

header compression schema.  Header compression, under SCPS-TP, lessens the amount 

of header information passed between a sender and a receiver during a TCP session 

(Durst, Miller, and Travis, 1997:394).  This is accomplished by only allowing changed 

header information to be passed directly during the TCP session; static header 

information is summarized and omitted fields (those TCP header fields whose flags are 

not set) are not passed (Durst, Miller, and Travis, 1997:394; Ishac, 2001: 6-7).  Though 

this compression technique can result in variable lengths for the TCP header, it can result 

in up to a 50% decrease in header size (Durst, Miller, and Travis, 1997:394).    
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Selective Negative Acknowledgements 

The primary purpose of the SNACK option is to improve the loss recovery 

mechanisms of a TCP session, while at the same time improve the bandwidth utilization 

between a sender and receiver (Durst, Miller, and Travis, 1997:394).  This goal is met by 

using some of the properties of the SACK option, presented in RFC 2018 (Mathis et al., 

1996:1-12), and the Negative Acknowledgement (NAK) proposal found in RFC 1106 

(Fox, 1989:1-13; Durst, Miller, and Travis, 1997:394-395).  Unlike the SACK and NAK 

options (and the ACK system found in generic TCP), the SNACK solution can enable a 

receiver to identify multiple holes (missing segments) to a sender (Broyles, 1999:15; 

Durst, Miller, and Travis, 1997:395; Luglio, Cesare, and Gerla, 2004:4).  This property 

allows more efficient use of transmission bandwidth, as the SNACK option needs just a 

single RTT allocation to identify multiple missing segments, whereas the SACK and 

NAK options require a RTT allocation for each missing segment notification (Broyles, 

1999:15). 

Timestamps and Window Scale Modifications 

 The SCPS-TP modification makes use of the TCP Timestamp and Window Scale 

Modification (Window Scale Modification found in SCPS-TP are the same as those 

previously discussed in the TCP Performance Enhancement Techniques found in this 

section and therefore will not be covered in this part of the document) options found in 

RFC 1323 (Jacobson, Braden, and Borman, 1992:1-37; Durst, Miller, and Travis, 

1997:396).  The TCP timestamp option enables a receiver to add timing information in 

each ACK sent to a sender during a TCP session (Jacobson, Braden, and Borman, 

1992:12-16).  This allows the sender to approximate the RTT required for segment/ACK 
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transmission; this knowledge of the transmission medium by the sender allows it to 

determine whether or not “missing” segments need to be transmitted, as these segments 

may still be in transit or in the receiver’s buffer based on the calculated RTT and the 

segment size (Durst, Miller, and Travis, 1997:396; Jacobson, Braden, and Borman, 

1992:14). 

TCP Vegas Congestion Control Algorithms 

 The TCP Vegas variant was developed to further increase the transmission 

throughput of a network, as well as minimize the network’s segment loss when compared 

to the generic TCP standard and other associated variants (such as TCP Reno and TCP 

Tahoe) (Brakmo and Peterson, 1995: 1468).  To accomplish this goal, the creators of 

TCP Vegas made modifications to the TCP standard’s algorithms concerning segment 

retransmission response time (in the event of segment loss, the RTT calculation is more 

accurate and belies the need for three duplicate ACKs in order for retransmission of a 

segment to occur), made possible for the TCP mechanism to foresee network congestion 

and change transmission rates in response (TCP Vegas compares current throughput rates 

with the expected throughput rate based on network bandwidth allocations to expand the 

TCP window; generic TCP and TCP Reno continually grow the TCP window until a loss 

occurs that could potentially invoke other congestion control algorithms), and evolved the 

TCP slow-start algorithm to limit loss during its execution (TCP Vegas allows only 

exponential growth of the window, after a loss, every other RTT (linear growth allowed 

on the other cycles) in order to minimize the potential of allowing the window size to 

exceed network capabilities, but still allow the window to reach maximum size in a 

timely fashion (Brakmo and Peterson, 1995: 1468-1480). 
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Summary    

 
This chapter presented an overview of the TCP/IP protocol suite, to include the 

congestion control algorithms.  TCP/IP performance hinderers, to include the satellite 

environment (latency), BER, and bandwidth asymmetry effects, were also presented.  

Improvements to the TCP algorithms, namely SACKs and an increased widow size, to 

counteract the above effects were covered, as were PEPs (particularly those that make use 

of the SCPS-TP mechanisms) that are also utilized to improve TCP performance due to 

degradations. 
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III. Methodology 

Chapter Overview 

 
 This chapter will present an overview of the methodology to the experimentation 

that is required for this study.  Items to be covered include the justification for the 

experimental method, and an overview of the test environment and associated hardware 

and software.  In addition, the experimental design, to include identification of dependent 

and independent variables, will be presented, as well the statistical methods that will be 

used to examine obtained data sets. 

Method Selection 

 In studying network topologies there are generally three methods of 

experimentation: direct study, mathematical derivation, and simulation (Broyles, 

1999:19-20).  Direct study involves obtaining experimental measures from actual 

networks of interest; in the case of this study, this means access to a satellite transmission 

system, as well as associated TCP/IP networks that utilize the satellite transmission path.  

Due to the relatively high demand and low availability of such assets, this type of 

experimentation was not considered a viable solution.  Mathematical derivation of 

network performance would typically involve solving a copious amount of simultaneous 

equations (Broyles, 1999:20).  This type of experimentation was considered beyond the 

scope of this body of work.  The final method involves the creation of a simulated 

environment in which to test various independent variables effect upon dependent 

variables of interest.  This type of method allows the experimenter a great amount of 

control concerning the application of independent variables, as well as measuring the 



 30

response of dependent variables.  In addition, the virtual creation of infrastructure objects 

(such as a satellite terminal) gives access to assets that would other wise be unavailable.  

For these reasons, simulation was the method of choice for the experimentation required 

for this thesis work. 

Simulation Environment 

The simulation environment of this study was not created via a network 

simulation tool, such as OPNET, but instead was constructed through the implementation 

of a computer network and use of software packages to simulate various 

network/transmission devices.  See the sections below for an overview of the network 

topologies and software utilized for this thesis work. 

Network Topology for TCP/SACK/Window Scale Testing. 

 The computer network implemented for this research consisted of five Dell 1750 

Power Edge blade servers connected via gigabit Ethernet network interface cards (NICs) 

and category five crossover cables.  For a listing of hardware specifications for these 

servers, refer to Table 1.  For the network topology, see Figure 3.  

Table 1. Server Hardware Listing 
Manufacturer Dell

Model Number 1750 Power Edge
Processor Type Intel Xeon 2.4GHz, 533MHz FSB 

Processor Configuration Dual
Memory 1024Mb ECC DDR

Hard Drive Capacity 2 x 36GB
NIC Type Gigabit Ethernet

NIC Manufacturer Broadcom
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Figure 3.  Network Topology 
 The first step taken to establish the test network was the assignment of IP 

addresses to each of the respective servers and associated Ethernet interfaces.  As can be 

seen in Figure 3, the three middle servers have a dual NIC configuration that necessitated 

the assignment of two IP addresses.  The end machines (netperfc and netperfs) had 

gateway links established to their neighboring servers (router10 and router20); the 

remaining servers had IP forwarding enabled (allows the respective machines to pass 

through IP traffic) and had networking routing information for each of the IP networks 

established for each Ethernet interface via the manipulation of network system files.  

End-to-end connectivity was verified via successful use of ping and traceroute commands 

on each of the servers.  Also noteworthy is the use of a single network for use in this 

experimentation.  The program that was used for satellite simulation, spanner, 

implements a bridging function that necessitated the use of a single network between 

router10 (eth1 interface), spanner (eth0 and eth1 interfaces), and router20 (eth0 

interface).  In addition, PEPs were utilized to test the SCPS enhancement; these PEPs 
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were also implemented via a bridging function.  To simplify routing setup, it was decided 

that all servers would reside on the same IP network.  

 The servers depicted in Figure 3 were loaded with an open source operating 

system (OS); Fedora Core 4 was loaded on the edge servers (netperfc and netperfs) and 

the middle server (spanner).  Fedora Core 2 was installed on boxes designated router10 

and router20.  The OS selection was based upon the native environment required for 

software packages used to emulate various network devices.  Iperf, a software tool that is 

used to gather network performance metrics, operates natively in a Linux-based 

environment with Kernel builds 2.1 or greater.  Spanner, a satellite link emulator 

developed by the Mitre Corporation, is also native to a Linux environment with 

successful loads occurring on boxes utilizing Kernel build 2.4 or greater.  Iperf was 

loaded on hosts netperfc and netperfs, whereas spanner was installed on host spanner.  A 

brief overview of both Iperf and spanner can be found in the following sections.  The 

router10 and router20 systems did not have any software loaded on them other than the 

Fedora Core 2 OS; a Linux-based OS supports various TCP enhancement protocols, most 

notably TCP extensions for window scale modifications and SACKs as conceived by 

RFC 1353.  The OS implements TCP extensions by default; both window scale and 

SACK techniques can be individually enabled or disabled through manipulation of 

network system files core to the Linux OS.  

Iperf Overview. 

Iperf is a freely distributed software package that can be utilized to measure a 

number of network performance metrics, to include network throughput (Blum, 2003:99-

101).  Iperf obtains network information through use of a client/server topology.  A 
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networked computer will execute Iperf and in essence represent the client side of the 

program.  A separate machine will also implement Iperf, but will instead act as a server.  

An Iperf server awaits inbound connections from remote hosts that are executing Iperf 

commands from the client side (Blum, 2003:105).  From a command line interface (Iperf 

also includes a package known as Jperf that is a Java-based graphical interface; Jperf was 

not used during this experimentation) Iperf can pass specified traffic patterns between the 

client and server and generate subsequent network performance metrics (Blum, 

2003:101-102).  Such traffic patterns can include TCP stream testing in which maximum 

throughput (by default Mbits/sec, can be modified) of a TCP session can be determined 

(Blum, 2003:101).  The command line interface also allows manipulation of various test 

factors, such as packet size and test duration, allowing traffic patterns to be tailored in 

order to measure specific network loading situations (Blum, 2003:106-107).    

Spanner Overview. 

The Mitre Corporation developed the spanner software package to provide 

satellite link emulation for protocol testing environments composed of networked 

computers (Mitre, 2006).  Spanner is typically loaded on a system that is used to bridge 

two or more computers that are acting as network devices, such as client, servers, or 

routers.  In this way, a machine that is executing spanner is acting as the transmission 

path for other networked devices.  Conveniently, spanner allows manipulation of key 

satellite propagation characteristics via a command line interface; variables that can be 

emulated by spanner include latency, BER, and bandwidth allocation (Mitre, 2006).  

Through manipulation of these variables, a realistic transmission environment can be 

virtually constructed.  
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Network Topology for PEP/SCPS-TP Testing. 

 The experimentation for this study also necessitated another network topology in 

order to ascertain the performance benefits of a PEP that utilizes the SCPS-TP standard.  

As can bee seen in Figure 4, the network topology for this segment of testing replaces the 

servers used as routers with PEP devices from Xiphos Technologies, Inc.   

 

Figure 4.  Network Topology for PEP Testing 
 

All other servers remain unchanged and will continue to utilize onboard software to 

perform network metrics gathering.  An overview of the XipLink Mini-Gateway© is 

presented in the following section. 

Xiplink Mini-Gateway Overview. 

 The Xiplink Mini-Gateway makes use of the SCPS-TP standard and is intended 

for use in transmission environments that experience high levels of latency as well as 

excessive amounts of bit errors (Xiphos Technologies, Inc., 2005:1).  The Mini-Gateways 
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make use of two 10/100 Ethernet interfaces; one interface is intended for connection to a 

LAN, the other for connection to either a router or direct connection to a satellite modem 

(Xiphos Technologies, Inc., 2005:3-6, 31).  In addition, the PEPs can operate in two 

modes, termed routing and bridging (Xiphos Technologies, Inc., 2005:3-4).  Routing 

mode, based on the appropriate IP configurations, allows a near “drop and insert” 

installation in any network environment that requires TCP session enhancement.  The 

bridging mode is intended for use on networks that pass traffic via satellite links (hence, 

needing enhancement) and traffic that does not travel on high delay/error paths (no 

enhancement needed) (Xiphos Technologies, Inc., 2005: 4.)  Bridging mode also requires 

minimal routing information during setup of a Xiplink; only default routes need be 

specified, as well IP assignments to a given device’s Ethernet interfaces.  Routing mode 

setup can also be minimal, particularly if a Dynamic Host Configuration Protocol server 

is used.  In the case of static routing, routing mode setup can be more cumbersome.  In 

order to simplify setup, due to use of static routing, it was decided that bridging mode 

would be the preferred method.  It is of importance to note that bridging mode in the 

Xiplink mini-gateway does not allow use of header compression specified in the SCPS 

standard.  Use of header compression is, however, available in the routing mode 

implementation.   Unfortunately, firmware errors concerning header compression have 

been identified by Xiphos Technologies making, in essence, header compression 

unavailable in either mode.  It is expected that header compression will make litter 

difference in the magnitude of throughput testing results.  Screenshots of the 

configuration of the respective Xiplinks can be seen in Appendix A. 
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Experimental Design 

The overall design for experimentation will be a cross-section factorial design.  

This design type was selected as it minimizes the amount of sample points required and 

allows for direct analysis of interactions between variables of interest (Schwab, 2005:78).  

The dependent variable of interest will be average throughput (kilobits/sec) as calculated 

by Iperf during testing of the two network topologies outlined previously.  It should be 

noted that the throughput output provided by Iperf is an average of samples obtained 

during the test duration.  The independent variables of interest can generally be separated 

into two categories: TCP enhancement technique(s) and transmission factors.  TCP 

enhancement techniques include use of standard TCP (no enhancements, acts as the 

control data), use of SACKs (on all servers), use of window scale (all servers), use of 

both SACKs and window scale techniques (all servers), and use of a PEP/SCPS-TP 

standard.  See Table 2 for the Linux kernel settings for each of the testing scenarios.   

Table 2.  TCP Testing Server Settings 

Test Scenario 
Kernel Setting  

(Modification of /etc/sysctl.conf) Servers Modified 
TCP None None 

Window Scale net.ipv4.tcp_window_scaling = 1 All 
SACK net.ipv4.tcp_sack = 1 All 

Window Scale/ 
SACK 

net.ipv4.tcp_sack = 1  
net.ipv4.tcp_window_scaling = 1

All 

SCPS-TP None None 
 

Note that all of the servers using a TCP enhancement(s) must be modified in order to 

ensure a given enhancement was used end-to-end.  It was observed during dry run testing 

that modification (either window scale, SACK, or window scale/SACK) of only the client 

(netperfc) and server (netperfs) resulted in performance values that were comparable to 
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standard TCP results.  Conversely, modification of the entire topology resulted in 

improved throughput performance, as compared to standard TCP, for each of the TCP 

enhancement strategies.  The likely reason for this is that unmodified servers were not 

passing the appropriate header flags to neighboring machines concerning use of SACKs; 

servers that did not make use of window scale were likely minimizing the agreed to 

window size during a given TCP session start-up.  Modifying all servers in the 

transmission chain allowed each server to pass the appropriate header information and 

agree upon an appropriate window size and make use of SACKs as outlined in RFC 

1353. 

The transmission factors that will be used during testing include delay (fixed at 

285ms for one-way propagation), BER (to include levels of 10-5, 10-6, 10-7, 10-8, and 10-9), 

transmission bandwidth (1.544Mb/s) and packet size (128kb, 512kb).  Additionally, 

scenarios will be conducted in five-minute intervals.  For a listing of 

independent/dependent variables used for each test scenario, refer to Tables 2, 3, 4, 5, and 

6 below.  Please note that for every scenario listed below, 30 samples (simulation time 

will be 5 minutes per sample) will be taken (150 minutes of simulation per scenario).  In 

addition, each scenario was conducted in an automated fashion via scripting; see 

Appendix B for the syntax of the utilized scripts. 
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Table 3.  TCP Testing Dependent/Independent Variables 
Dependent Variable Metric
Average Throughput kb/s

Independent Variables Treatment Levels
SACKs No

Window Scale No
SACKs/Window Scale No

SCPS-TP No
Delay 570ms, Round Trip
BER 10-5, 10-6, 10-7, 10-8, 10-9 

Transmission Bandwidth 1.544Mb/s
Packet Size 128kb, 512kb

Duration 300 sec
 

Table 4.  SACK Testing Dependent/Independent Variables 
Dependent Variable Metric
Average Throughput kb/s

Independent Variables Treatment Levels
SACKs Yes

Window Scale No
SACKs/Window Scale No

SCPS-TP No
Delay 570ms, Round Trip
BER 10-5, 10-6, 10-7, 10-8, 10-9 

Transmission Bandwidth 1.544Mb/s
Packet Size 128kb, 512kb

Duration 300 sec
 

Table 5.  Window Scale Testing Dependent/Independent Variables 
Dependent Variable Metric
Average Throughput kb/s

Independent Variables Treatment Levels
SACKs No

Window Scale Yes
SACKs/Window Scale No

SCPS-TP No
Delay 570ms, Round Trip
BER 10-5, 10-6, 10-7, 10-8, 10-9 

Transmission Bandwidth 1.544Mb/s 
Packet Size 128kb, 512kb 

Duration 300 sec 
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Table 6.  SACK/Window Scale Testing Dependent/Independent Variables 
Dependent Variable Metric
Average Throughput kb/s

Independent Variables Treatment Levels
SACKs No

Window Scale Yes
SACKs/Window Scale Yes

SCPS-TP No
Delay 570ms, Round Trip
BER 10-5, 10-6, 10-7, 10-8, 10-9 

Transmission Bandwidth 1.544Mb/s
Packet Size 128kb, 512kb

Duration 300 sec
 

Table 7.  SCPS-TP Testing Dependent/Independent Variables 
Dependent Variable Metric
Average Throughput kb/s

Independent Variables Treatment Levels
SACKs No

Window Scale No
SACKs/Window Scale No

SCPS-TP Yes
Delay 570ms, Round Trip
BER 10-5, 10-6, 10-7, 10-8, 10-9 

Transmission Bandwidth 1.544Mb/s
Packet Size 128kb, 512kb

Duration 300 sec

 

Statistical Analysis Techniques 

 Upon successful gathering of the experimental data it will of course be necessary 

to analyze the data in a manner that will answer the research questions specified in 

Chapter 1.  Most of the research questions deal with performance benefits of the various 

enhancement techniques as compared to a standard TCP implementation.  These type of 

questions can generally be answered utilize descriptive statistics.  The more probing 

question of the study deals with the determining whether or not a statistical difference 

exists between the performance improvements afforded by each of the TCP enhancement 
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techniques.  Answering this question will require use of more vigorous statistical analysis 

than descriptive statistics can provide.  Therefore, it will be necessary to make use of a 

statistical software package, in the case of this study JMP 5.1, to generate the necessary 

statistical analyses.  JMP 5.1 will be used to conduct an analysis of variance (AOV) 

model in which the null hypothesis will be that the means of the data being compared are 

equal, or (McClave, Benson, and Sincich, 2005:567): 

Ho: μ1=μ2=μ3=μ4=μ5  

The alternative or research hypothesis is that at least one of the means of the data being 

compared are not equal, or (McClave, Benson, and Sincich, 2005:567): 

Ha: at least one mean is different 

The AOV output under JMP 5.1 will provide an R2 adjusted value and a p-value that will 

reveal the fitness of the model hypotheses.  It will, of course, be necessary to validate the 

three key assumptions (normality, constant variance, and independence of the residuals) 

of the AOV method before any generalizations can be drawn from the results.  In 

addition, as a result of conducting an AOV via JMP 5.1, another analysis tool known as 

Tukey analysis becomes available; Tukey analysis aids in determination to the statistical 

differences (if any) between sets of data.  This will further aid in the statistical analysis of 

the gathered data sets.  

 Data analysis of experimental results does not always progress in an expected 

manner.  In the case of the AOV method, there is a distinct possibility that data sets may 

not meet the three assumptions of normality, constant variance, and independence.  

Therefore it may be necessary to make use of a non-parametric technique that does not 

require any type of assumptions concerning the data distribution(s).  One such technique, 
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the Kruskal-Wallis H-test, allows comparison of means without any type of assumptions 

of the probability distributions (McClave, Benson, and Sincich, 2005:1095).  Much in the 

same manner as AOV, the Kruskal-Wallis test allows for differences between populations 

to be detected.  Unlike AOV, Kruskal-Wallis accomplishes this by ranking (from smallest 

to largest) obtained data points; rankings are conducted as though samples were obtained 

from the same population, meaning, in the case of this study, samples obtained for 

scenarios that utilize difference enhancement techniques would be grouped together 

during the ranking process (McClave, Benson, and Sincich, 2005:1079, 1096).  The H-

statistic generated by the Kruskal-Wallis test measures the differences between samples 

according to the generated rank structure (McClave, Benson, and Sincich, 2005:1097).  In 

terms of a null or alternative hypothesis, the Kruskal-Wallis test can be expressed as 

(McClave, Benson, and Sincich, 2005:1098): 

Ho: probability distributions are identical  

Ha: at least two of the probability distributions differ in location 

It is key to note that the JMP 5.1 software package does not express the H-statistic 

directly, but instead generates a ρ-value that can be compared to the model’s error 

probability (JMP 5.1 defaults to an α value of .95, with the probability of an error at .05).  

A valid test will have a ρ-value, in the case of the default reliability of JMP 5.1, less than 

.05. 

 The statistical analyses of this research can aid military units and commercial 

entities in deciding and justifying use (or opting not to use) of a TCP enhancement 

strategy.  Obviously, units will need to take into account the costs of their respective 

satellite leases and balance the gains (in terms of bandwidth efficiency) a TCP 
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enhancement can provide versus its costs.  This business case analysis will be discussed 

further in the following chapters. 

Chapter Summary 

 This chapter presented an overview of the research methodology for this study.  

Items presented in this chapter included the justification for the method of 

experimentation, an overview of the test network topologies to include hardware and 

software considerations, the experimental design, and an overview of the statistical tools 

that will be used on the gathered data sets. 



 43

IV. Results and Analysis 

Chapter Overview 

 
 This chapter will present the data analyses for this thesis work.  Data analysis was 

conducted in sections, based on the level of BER applied and the size of packets 

transmitted from client netperfc and server netperfs.  As a result, 10 sections of data 

analysis will be covered; summary information will follow these sections that present the 

findings of the performance of the enhancement techniques under consideration. 

Statistical Analyses 

 The statistical analyses in this section were conducted in the manner outlined in 

Chapter 3.  The data analysis presentation will be rather thorough for scenario 1; all other 

scenarios, unless otherwise specified, will follow along the same path as scenario 1 and 

as such, their respective findings will be summarized appropriately.  The complete data 

set, for which these statistical analyses were conducted on, can be found in Appendix C. 

Scenario 1: 10-5 BER and 128kb packets 

 The execution of an AOV fit model via JMP 5.1 for this scenario resulted in 

relatively high values for R2 (.92) and R2 (.92) adjusted; as expected, the values for these 

results were close in value (after rounding, identical), as R2 was not inflated due to 

excessive model factors (all models only took throughput into consideration versus the 

enhancement technique utilized).  In addition, the obtained ρ-value was less than .0001, 

indicating further validation to the model’s fitness and that a difference exists between at 

least two of the sample means (Ha is found to be true).  See Tables 8 and 9 for the 

analysis of variance and summary of fit results. 
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Table 8.  Analysis of Variance Results for 10-5 BER/128kb Packet Scenario 
Output Result

R2 .92
R2 Adjusted .92

Root Mean Square Error 12.68
Mean of Response 66.32

Observations 150
 

Table 9.  Model Summary of Fit for 10-5 BER/128kb Packet Scenario 
Output Result

Degrees of Freedom, Model 4
F-Ratio 418.17

Probability > F (ρ-Value) <.0001
 
 The resulting Tukey analysis from this model established two groupings with 

respect to the enhancement technique utilized (at a family-wise error rate of .05).  The 

SCPS-TP enhancement comprised one group, with all other techniques making up the 

other group.  The Tukey analysis results can be seen in Table 10. 

Table 10.  Tukey Analysis Results for 10-5 BER/128kb Packet Scenario 
Enhancement Technique Grouping* Least Square Mean 

SCPS-TP A 150.67
Window Scale/SACK B 49.49

SACK B 49.03
Window Scale B 41.79

TCP (No Enhancement) B 40.64
 
These results indicate definite performance differences, but before any inferences can be 

made, it will be necessary to validate the AOV model assumptions concerning 

independence, normality, and constant variance of the residuals.  To test for 

independence, the Durbin-Watson test was utilized; for normality, the Shapiro-Wilk test;  

and finally, for constant variance the Breusch-Pagan test was used. 

 The Durbin-Watson test results indicated a lack of independence of the residuals, 

based on the obtained ρ-value of .0126 (at a passing threshold of .05).  This violation has  

*Groups not connected by the same letter are significantly different 
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serious repercussions in a time series regression model (such as temperature forecasting), 

of which this study is not categorized as one (McClave, Benson, and Sincich, 2005:1044-

1048).  Based on the closeness in value of the obtained ρ-value and the threshold for a 

failed to reject result, it can be surmised that this violation is minor. 

 The Shapiro-Wilk test result also casts doubt on the validity of the AOV model, 

with the goodness-of-fit calculation resulting in a ρ-value that was less than .0000.  

Though the residual distribution in Figure 5 appears to be somewhat symmetric and 

normal in shape, there is a significant amount of outliers existing beyond three standard 

deviations from the majority of residuals indicated by the box-plot.    

-5 -4 -3 -2 -1 0 1 2 3 4

 

Figure 5.  Distribution/BOX-Plot for Throughput Residuals for 10-5 BER/128kb Packet 
Scenario 

 
AOV is robust against violations of normality, but it is still of interest to determine why 

such a violation exists (White, 2005).  In plotting the distribution for throughput (all 

results), it can be seen in Figure 6 that the sample data clusters around two distinct areas; 



 46

one exists below the value of 100, whereas the other exists above this reference point.  

0 50 100 150 200
Throughput (kbps)

 

Figure 6.  Throughput Distribution for 10-5 BER/128kb Packet Scenario 
 
From review of the data set, these separate populations were created due to the clumping 

of data points around 50kbps (the throughput results of generic TCP, SACK, window 

scale, and window scale/SACK) and at 150kbps (SCPS-TP).  The resulting skewness of 

the data set is likely responsible for the violation of normality of the residuals; though 

AOV is robust against this violation, it is of concern with respect to the validity of this 

model.   

 In order to execute Breusch-Pagan test, it is necessary to obtain the values for the 

Sum of Squares (SSR) from a fit model that uses the square of the residuals (residuals2) 

and from the Sum of Squares Error (SSE) from the original (fit model of throughput) 

model.  Conducting a fit model with residuals2 resulted in an SSR of 12,883,090; the 

original model had a SSE of 23,297.73.  The ρ-value for the Breusch-Pagan test was 

obtained via use of a spreadsheet program (Microsoft’s Excel) and the expression: 

 
CHIDIST (((SSR/2)/(SSE/N)^2),DF)  (5) 



 47

Where N is the number of observations and DF represents the model’s degrees of 

freedom.  In actual execution, the spreadsheet expression refers to cells of the 

spreadsheet; these references were changed to variable representations for clarity.  

Calculation of the ρ-value for this test resulted in a value less than .0000.   At a threshold 

of .05, the model has failed to pass this test, indicating a large amount of variance exists 

in the model.  Due to the results of this test and the other validation tests for AOV, it is 

apparent that inference-making capability afforded by the model is extremely limited.  As 

a result, it will be necessary to conduct a non-parametric test, the Kruskal-Wallis rank 

sums test, which requires no assumptions concerning the sample distribution and 

provides a tool to gauge whether or not a difference exists between the differing 

enhancement techniques. 

 The Kruskal-Wallis test revealed, through observation of the rank sums score 

means and the obtainment of a ρ-value of less than .0001, that there is a statistical 

difference in the probability distributions for each of the enhancement techniques, 

meaning that the research hypothesis, Ha, has been verified.  The results of this test can 

be seen in Table 11 below. 

Table 11.  Kruskal-Wallis Test Results for 10-5 BER/128kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 2642.5 88.08 
SCPS-TP 30 4065 135.5 

TCP (No Enhancement) 30 858.5 28.62 
Window Scale 30 1002.5 33.42 

Window Scale/SACK 30 2756.5 91.88 
 

Unfortunately, though the Kruskal-Wallis method can determine differences between 

samples, it is unable to adequately group these samples based on statistical equivalence as 

found in the Tukey analysis.  Since a difference has been statistically determined, 



 48

however, one can now rely upon descriptive statistical techniques to determine the 

differences between the TCP enhancement techniques. 

 The first descriptive method used will be the determination of confidence 

intervals (at a reliability of .95) for each of the enhancement techniques with respect to 

measured throughput.  Using Excel’s data analysis add-in, confidence intervals can be 

quickly generated; the results can be seen in Table 12. 

Table 12.  Descriptive Statistics for 10-5 BER/128kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 49.03 2.85 8.13 49.03 ± 1.06
SCPS-TP 30 150.67 27.69 766.94 150.67 ± 10.3

TCP (Unmodified) 30 40.64 4.21 17.7 40.64 ± 1.57
Window Scale 30 41.78 2.08 4.34 41.7867 ± 0.77

Window Scale/SACK 30 49.49 2.48 6.18 49.49 ± 0.92
 

From Table 12, the confidence intervals reveal groupings of the enhancement techniques.  

SCPS-TP can be placed in its own group, as no other method comes close to its 

performance numbers.  The SACK and window scale/SACK methods can be grouped 

together, as they appear to provide the same level of benefit concerning throughput, 

which is marginally better than generic TCP and the window scale strategy.  Finally, the 

window scale technique seems to be equivalent to the baseline measure of unmodified 

TCP.  In terms of throughput enhancement, Figure 7 displays the percentage 

improvement afforded by each of the techniques as compared to the baseline (unmodified 

TCP); Figure 8 demonstrates the amount of bandwidth utilization for each of the 

modifications, to include standard TCP.   
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Figure 7.  Throughput Improvement Percentages for 10-5 BER/128kb Packet Scenario 
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Figure 8.  Bandwidth Utilization for 10-5 BER/128kb Packet Scenario 

 
 The remaining scenarios where analyzed in the same fashion as Scenario 1 and 

were also found to violate the required AOV assumptions, particularly that of constant 

variance.  As a result, the remaining scenarios will not present the results of the AOV 

analysis and will instead present just the non-parametric results. 
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Scenario 2: 10-5 BER and 512kb packets 

 The Kruskal-Wallis test revealed, with a ρ-value less than .0001, a statistical 

difference in the probability distributions for each of the enhancement techniques exists.  

The results of this test can be seen in Table 13 below. 

Table 13.  Kruskal-Wallis Test Results for 10-5 BER/512kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 2723 90.77 
SCPS-TP 30 4065 135.5 

TCP (No Enhancement) 30 802.5 26.75 
Window Scale 30 1041.5 34.72 

Window Scale/SACK 30 2693 89.77 
 

Knowing that a statistical difference exists between at least one of the enhancement 

methods, descriptive statistics can now be used to give insight as to what those 

differences are.  A 95% confidence interval was calculated for each of enhancement 

methods with respect to throughput.  The results of these calculations can be seen in 

Table 14.  

Table 14.  Descriptive Statistics for 10-5 BER/512kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 49.03 2.11 4.47 49.03 ± 0.79
SCPS-TP 30 150.34 20.57 424.07 150.34 ± 7.68

TCP (Unmodified) 30 41.06 1.81 3.28 41.06 ± 0.68
Window Scale 30 42.01 1.9 3.62 42.01 ± 0.71

Window Scale/SACK 30 49.02 2.75 7.55 49.02 ± 1.03
 

From Table 14, the confidence intervals reveal groupings of the enhancement techniques.  

SCPS-TP can be placed in its own group, as no other method comes close to its 

performance numbers.  The SACK and window scale/SACK methods can be grouped 

together, as they appear to provide the same level of benefit concerning throughput, 

which again is marginally better than generic TCP and the window scale strategy.  
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Finally, the window scale technique seems to be equivalent to the TCP baseline.  The 

percentage of throughput enhancement, with respect to TCP, can be seen in Figure 11.   
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Figure 9.  Throughput Improvement Percentages for 10-5 BER/512kb Packet Scenario 
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Figure 10.  Bandwidth Utilization for 10-5 BER/512kb Packet Scenario 
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Scenario 3: 10-6 BER and 128kb packets 

 As expected, the Kruskal-Wallis test (with a ρ-value less than .0001) revealed a 

statistical difference exists in the probability distributions for each of the enhancement 

techniques.  The results of this test can be seen in Table 15. 

Table 15.  Kruskal-Wallis Test Results for 10-6 BER/128kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 1722.5 57.42 
SCPS-TP 30 3980 132.67 

TCP (No Enhancement) 30 1541 51.37 
Window Scale 30 2346 78.2 

Window Scale/SACK 30 1735.5 57.85 
 

Knowing that a statistical difference exists between at least one pair of the enhancement 

methods, we can now rely upon descriptive statistics to determine the differences.  A 

95% confidence interval was calculated for each of enhancement methods with respect to 

throughput.  The results of these calculations can be seen in Table 16.   

Table 16.  Descriptive Statistics for 10-6 BER/128kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 180.6 10.8 116.59 180.6 ± 4.03
SCPS-TP 30 401.63 70.63 4988.17 401.63 ± 26.37

TCP (Unmodified) 30 177.9 12.17 148.16 177.9 ± 4.55
Window Scale 30 188.9 14.11 199.13 188.9 ± 5.27

Window Scale/SACK 30 181.03 14.58 212.52 181.03 ± 5.44
 
From Table 16, it can be observed that the confidence intervals somewhat reveal the 

groupings of the various enhancement techniques.  Again, SCPS-TP can be placed in its 

own group, as no other method comes close to its performance in terms of throughput.  

The window scale strategy does have some overlap with respect to the remaining 

techniques, but could marginally be considered in its own group.  The remaining 

modifications (SACK, window scale/SACK, TCP) comprise the final grouping.  The 
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percentage of improvement to throughput, based on the TCP baseline, can be seen in 

Figure 11, as well as the bandwidth utilization in Figure 12. 
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Figure 11.  Throughput Improvement Percentages for 10-6 BER/128kb Packet Scenario 
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Figure 12.  Bandwidth utilization for 10-6 BER/128kb Packet Scenario 
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Scenario 4: 10-6 BER and 512kb packets 

The execution of the Kruskal-Wallis test highlighted (with a ρ-value less than .0001) 

the fact that a statistical difference exists between the probability distributions for each of 

the enhancement techniques.  The results of this test can be seen in Table 17. 

Table 17.  Kruskal-Wallis Test Results for 10-6 BER/512kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 1933.5 64.45 
SCPS-TP 30 3945 131.5 

TCP (No Enhancement) 30 1268.5 42.28 
Window Scale 30 1792 59.73 

Window Scale/SACK 30 2386 79.53 
 

Now that it is proven that a statistical difference exists between at least one of the 

enhancement methods, we can now rely upon descriptive statistics to determine the 

differences, mainly through use of confidence intervals (α = .95).  These confidence 

intervals can be seen in Table 18.  

Table 18.  Descriptive Statistics for 10-6 BER/512kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 182.6 10.45 109.15 182.6 ± 3.9
SCPS-TP 30 398.43 75.63 5719.7 398.43 ± 28.24

TCP (Unmodified) 30 174.73 9.9 98.06 174.73 ± 3.7
Window Scale 30 181.37 15.87 251.9 181.37 ± 5.93

Window Scale/SACK 30 189.57 14.77 218.19 189.57 ± 5.52
 

From Table 18, the following groupings seem to be present: SCPS-TP makes up one 

group; the SACK, window scale, and window scale/SACK strategies make up another; 

finally, TCP is in its own group.  The percentage of improvement to throughput, based on 

the TCP baseline, can be seen in Figure 13.  In Figure 14, the amount of bandwidth 

utilization for each technique is displayed.  
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Figure 13.  Throughput Improvement Percentages for 10-6 BER/512kb Packet Scenario 
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Figure 14.  Bandwidth Utilization for 10-6 BER/512kb Packet Scenario 

Scenario 5: 10-7 BER and 128kb packets 

 The failure of validating the assumptions of AOV again required the use of a non-

parametric method.  Execution of this method resulted in a ρ-value less than .0001, 

indicating that a statistical difference exists between the various enhancement techniques.  

The results of this test can be seen in Table 19. 
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Table 19.  Kruskal-Wallis Test Results for 10-7 BER/128kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 1273 42.43 
SCPS-TP 30 3945 131.5 

TCP (No Enhancement) 30 617 20.57 
Window Scale 30 2390 79.67 

Window Scale/SACK 30 3100 103.33 
 

Given that a statistical difference exists between at least two of the enhancement 

methods, confidence intervals (α = .95) can now be generated to further explain the 

respective differences in performance.  These confidence intervals are tabulated in Table 

20 below.  

Table 20.  Descriptive Statistics for 10-7 BER/128kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 382.47 9.66 93.36 382.47 ± 3.61
SCPS-TP 30 1157.87 174.16 30330.74 1157.87 ± 65.03

TCP (Unmodified) 30 359.03 17.06 290.99 359.03 ± 6.37
Window Scale 30 538.97 55.14 3040.38 538.97 ± 20.59

Window Scale/SACK 30 621.03 35.98 1294.24 621.03 ± 13.43
 

Table 20 seems to indicate, based on the calculated confidence intervals, that each of the 

techniques should be grouped individually.  The percentage of improvement to 

throughput, with respect to the unmodified TCP method, can be seen in Figure 15, with 

bandwidth utilization shown in Figure 16. 
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Figure 15.  Throughput Improvement Percentages for 10-7 BER/128kb Packet Scenario  
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Figure 16.  Bandwidth Utilization for 10-7 BER/128kb Packet Scenario 
 

Scenario 6: 10-7 BER and 512kb packets 

The results of the Kruskal-Wallis test indicated that a statistical difference exists 

between at least two of the enhancement techniques.  The results of this test can be seen 

in the table below. 
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Table 21.  Kruskal-Wallis Test Results for 10-7 BER/512kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 1273 42.43 
SCPS-TP 30 3945 131.5 

TCP (No Enhancement) 30 617 20.57 
Window Scale 30 2418.5 80.62 

Window Scale/SACK 30 3071.5 102.38 
 

From the score means, it can be seen that a difference exists between the different 

methods of TCP improvement.  Knowing this, confidence intervals (α = .95) can be 

determined to ascertain what these differences are with respect to throughput 

performance (see Table 22).  

Table 22.  Descriptive Statistics for 10-7 BER/512kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 379.83 7.95 63.25 379.83 ± 2.97
SCPS-TP 30 1153.1 167.43 28033.4 1153.1 ± 62.52

TCP (Unmodified) 30 357.5 18.03 324.95 357.5 ± 6.73
Window Scale 30 536.93 51.7 2672.69 536.93 ± 19.3

Window Scale/SACK 30 604.7 29.08 845.46 604.7 ± 10.86
 
The above table shows that none of the enhancement techniques overlap with respect to a 

95% confidence interval.  As such, each of the improvement methods should not be 

grouped with another in terms of throughput performance; they do not perform in a 

similar enough fashion to warrant any type of grouping.  Throughput performance 

improvements and bandwidth utilization for each of the methods in consideration are 

shown in Figures 17 and 18.    
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Figure 17.  Throughput Improvement Percentages for 10-7 BER/512kb Packet Scenario 
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Figure 18.  Bandwidth Utilization for 10-7 BER/512kb Packet Scenario 
 

Scenario 7: 10-8 BER and 128kb packets 

The results of the Kruskal-Wallis test also indicated that a statistical difference (with 

a (ρ-value less than .0001) exists between at least two of the enhancement techniques in 

this scenario.  The results of this test can be seen in the Table 23. 
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Table 23.  Kruskal-Wallis Test Results for 10-8 BER/128kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 769 25.63 
SCPS-TP 30 4065 135.5 

TCP (No Enhancement) 30 1061 35.37 
Window Scale 30 3165 105.5 

Window Scale/SACK 30 2265 75.5 
 

From the scores in Table 23, it can be observed that a difference exists between the 

differing methods of TCP enhancement.  With this knowledge, confidence intervals can 

be calculated to further determine what these differences are in terms of throughput 

performance (see Table 24).  

Table 24.  Descriptive Statistics for 10-8 BER/128kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 421.57 3.27 10.67 421.57 ± 1.22
SCPS-TP 30 1426.1 8.72 76.02 1426.1 ± 3.26

TCP (Unmodified) 30 424.03 5.2 26.99 424.03 ± 1.94
Window Scale 30 901.07 0.25 0.06 901.07 ± 0.09

Window Scale/SACK 30 830.07 18.5 342.34 830.07 ± 6.91
 
The above table shows that only the SACK and generic TCP confidence intervals 

overlap; all other methodologies experience no type of convergence.  Therefore, each of 

the improvement methods, except for TCP and SACK, should not be grouped with 

another method in terms of throughput performance.  TCP and SACK perform in a 

statistically equivalent fashion in this scenario and there should be grouped together.  

Throughput performance, in terms of improvement with respect to standard TCP, can be 

seen in Figure 19; bandwidth utilization is captured in Figure 20.   
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Figure 19.  Throughput Improvement Percentages for 10-8 BER/128kb Packet Scenario  
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Figure 20.  Bandwidth Utilization for 10-8 BER/128kb Packet Scenario 
 

Scenario 8: 10-8 BER and 512kb packets 

The results of the non-parametric test, Kruskal-Wallis, confirmed that a statistical 

difference, at a ρ-value less than .0001, exists between at least two of the enhancement 
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techniques based on the rank sum score means.  A summary of the Kruskal-Wallis test 

can be seen below. 

Table 25.  Kruskal-Wallis Test Results for 10-8 BER/512kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 709.5 23.65 
SCPS-TP 30 4065 135.5 

TCP (No Enhancement) 30 1120.5 37.35 
Window Scale 30 3165 105.5 

Window Scale/SACK 30 2265 75.5 
 

Based on the results in Table 25, it will be necessary to determine confidence intervals 

for the various enhancement methodologies in order to ascertain the differences between 

the different approaches.  These calculations can be seen in the table below.  

Table 26.  Descriptive Statistics for 10-8 BER/512kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 422.57 3.59 12.87 422.57 ± 1.34
SCPS-TP 30 1425.478 9.22 85.02 1425.47 ± 3.44

TCP (Unmodified) 30 425.73 4.03 16.2 425.73 ± 1.5
Window Scale 30 903.97 0.19 0.03 903.97 ± 0.03

Window Scale/SACK 30 835.84 20.89 434.47 835.84 ± 7.67
 
The above table shows that none of confidence intervals overlap, however, the SACK 

and generic TCP techniques are extremely close in performance concerning throughput, 

making it reasonable to assume that their throughput performance results are equivalent.  

The remaining methodologies provide significant gains when compared to TCP; of the 

three, SCPS-TP performed at the highest level, with window scale second, and the 

window scale/SACK solution placing third.  The percentage of throughput improvement 

can be seen in Figure 21, with bandwidth utilization in Figure 22.  
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Figure 21.  Throughput Improvement Percentages for 10-8 BER/512kb Packet Scenario 
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Figure 22.  Bandwidth Utilization for 10-8 BER/512kb Packet Scenario 
 

Scenario 9: 10-9 BER and 128kb packets 

 Failures to confirm the AOV model assumptions indicated the need for a non-

parametric method.  Execution of the Kruskal-Wallis test confirmed that a disparity exists 
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between at least two of the enhancement methodologies (at a ρ-value less than .0001). A 

summary of the Kruskal-Wallis test can be seen in Table 27. 

Table 27.  Kruskal-Wallis Test Results for 10-9 BER/128kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 780 26.0 
SCPS-TP 30 4005 133.5 

TCP (No Enhancement) 30 1050 35.0 
Window Scale 30 2760 92.0 

Window Scale/SACK 30 2730 91.0 
 

Based on these non-parametric results, confidence intervals were generated to 

determine the differences between the various techniques.  The results of these 

calculations are displayed in the table below.  

Table 28.  Descriptive Statistics for 10-9 BER/128kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 430.8 1.45 2.1 430.8 ± 0.54
SCPS-TP 30 1414.07 164.14 26943.37 1414.07 ± 61.29

TCP (Unmodified) 30 431.7 1.51 2.29 431.7 ± 0.56
Window Scale 30 901.1 0.31 0.09 901.1 ± .11

Window Scale/SACK 30 901.07 0.25 0.06 901.07 ± 0.09
 
The above table shows a significant amount of overlap between two pairs of techniques.  

First, the window scale and window scale/SACK strategies appear to provide an 

equivalent level of performance benefit.  Second, the TCP and SACK methods also seem 

to provide an equivalent amount of throughput performance.  The only enhancement not 

equivalent to any of the others is SCPS-TP, as it performs well beyond any of the other 

methods.  The percentage of throughput improvement afforded by all of these techniques, 

with respect to standard TCP, can be seen in Figure 23.  Bandwidth utilization is shown 

in Figure 24.   
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Figure 23.  Throughput Improvement Percentages for 10-9 BER/128kb Packet Scenario  
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Figure 24.  Bandwidth Utilization for 10-9 BER/128kb Packet Scenario 
 

Scenario 10: 10-9 BER and 512kb packets 

 The Kruskal-Wallis method was also used for this scenario, with results (ρ-value 

less than .0001) indicating a difference exists between at least two of the throughput 

improvement techniques.  A summary of the Kruskal-Wallis test can be seen in Table 29. 
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Table 29.  Kruskal-Wallis Test Results for 10-9 BER/512kb Packet Scenario 
Enhancement Technique Count Score Sum Score Mean 

SACK 30 970 32.33 
SCPS-TP 30 4065 135.5 

TCP (No Enhancement) 30 860 28.67 
Window Scale 30 2715 90.5 

Window Scale/SACK 30 2715 90.5 
 

As previously explain, Kruskal-Wallis indicates differences exist, but not was the 

differences between samples are in terms of a mean or other descriptive method.  As 

such, confidence intervals were generated to determine and quantify these.  The results 

can be seen in Table 30.  

Table 30.  Descriptive Statistics for 10-9 BER/512kb Packet Scenario 

Enhancement Count Mean Standard 
Deviation Variance

Confidence 
Interval 

SACK 30 432.1 2.06 4.23 432.1 ± 0.77
SCPS-TP 30 1442.03 12.58 158.31 1442.03 ± 4.7

TCP (Unmodified) 30 431.73 2.21 4.89 431.73 ± 0.83
Window Scale 30 904 0.0 0.0 904 ± 0.0

Window Scale/SACK 30 904 0.0 0.0 904 ± 0.0
 
From the above table, it can be seen that overlap occurs between two pairs of techniques; 

the SACK and TCP methods overlap, as do the window scale and window scale/SACK 

methods.  Again, as in all previous scenarios, the SCPS-TP method differs greatly from 

all other techniques in terms of transmission throughput.  Transmission performance 

improvements, as compared to TCP, can be seen in Figure 25.  Bandwidth utilization 

results are displayed graphically in Figure 26. 
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Figure 25.  Throughput Improvement Percentages for 10-9 BER/512kb Packet Scenario 
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Figure 26. Bandwidth Utilization for 10-9 BER/512kb Packet Scenario 

 

Summary of Statistical Findings 

 It is obvious from the preceding sections that amount of throughput or bandwidth 

utilization experienced varied depending on the type of TCP technique utilized.  In 

consideration of overall performance, SCPS-TP presented the greatest amount of gain, in 



 68

terms of both throughput and bandwidth utilization, regardless of the transmission error 

rate or packet size utilized.  The other methods did begin to differentiate themselves from 

one another until testing began at an error rate of 10-7.  At this error rate, the window 

scale and window scale/SACK techniques began giving significantly greater gains for 

throughput and bandwidth utilization than standard TCP.  Finally, the SACK 

implementation either performed at a level that was consistent with performance numbers 

found with a standard TCP implementation or, at times, performed at level lower than 

generic TCP.  These findings are summarized below in Figures 27, 28, 29, and 30.  
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Figure 27.  Throughput Improvement Percentages for 128kb Packet Scenarios 
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512kb Packet Scenarios
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Figure 28.  Throughput Improvement Percentages for 512kb Packet Scenarios 
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Figure 29. Bandwidth Utilization for 128kb Packet Scenarios 
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Figure 30.  Bandwidth Utilization for 512kb Packet Scenarios 
 

Chapter Summary 

 This chapter presented an overview of the statistical analyses for this study.  Items 

presented in this chapter included the individual scenario results for TCP enhancement 

strategies and an overview of the overall statistical findings of this work.  The next 

chapter will present a summation of these findings and will use them to answer the 

research questions posed in Chapter 1.   
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V.  Conclusions and Recommendations 

Chapter Overview 

 
 This chapter will present the answers to the research questions posited in Chapter 

1, as well as provide the research conclusions, in terms of business case justifications for 

the various enhancement methodologies, for this study.  In addition future research 

recommendations will also be presented. 

Answers to Research Questions 

 
Research Question 1: What is the performance benefit (in terms of throughput) of 

implementing a SACK enhancement to TCP when TCP is utilized over a satellite 

transmission system? 

From above, it can be seen that RQ1 mainly dealt with the determination of the 

performance benefits of the various TCP enhancement mechanisms when utilized over a 

satellite transmission system.  In particular, RQ1 sought for the performance benefits of 

the SACK technique in a satellite communication system.  From the analysis in the 

previous chapter, it was apparent that the SACK schema provided maximum benefit (in 

terms of its performance over the various scenarios) when used during the highest level 

of BER (10-5); depending the packet size transmitted, the SACK technique provided up to 

a 20.64% (128kb packets, with a 19.4% improvement experienced with 512kb packets) 

improvement as compared to a standard TCP implementation.  This improvement rate, 

however, was not experienced at the other treatment levels of BER, as the SACK solution 

performed at levels comparable to standard TCP.  The spanner program utilized in the 

experimentation makes use of a Bernoulli distribution for bit error occurrence; the 
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likelihood of experiencing a bit error is merely a function of the assigned BER and the 

time period of testing.  It is likely that this property limited the effectiveness of the SACK 

technique, as compared to generic TCP, since not enough errors occurred at the higher 

BERs with respect to the test timeline of 300 seconds, which mitigated the need for a 

mechanism to prevent the execution of the congestion control algorithms.  In addition, 

real world satellite communication systems typically experience bit errors in bursts, 

whereas the spanner program, with use of a Bernoulli distribution, will insert errors in a 

somewhat systematic pattern.  It is likely that the SACK solution would have provided 

greater efficiency, in terms of throughput and as compared to TCP, if bursts of errors 

were experienced, as this technique could act in a single RTT and belie the need for 

execution of the TCP congestion control algorithms. 

Research Question 2: What is the performance benefit of implementing a window 

scale modification to TCP when TCP is utilized over a satellite transmission system? 

The second research question, RQ2, dealt with the determination of the 

performance benefits of the window scale solution when used in a satellite transmission 

system.  At the highest BER levels (10-5 and 10-6), the window scale technique provided 

throughput performance levels that were comparable to a standard TCP solution.  This 

result is somewhat intuitive, as probability of a bit error occurring (at the specified test 

duration) is likely and would result in significantly slower growth of the TCP window, 

with no advantage for the fast start or larger window properties of the window scale 

solution.  At the lower BER levels, the window scale method provided significant 

throughput performance levels, when compared to TCP, with minimum increase of 

50.12% and a high of 112.5%.  Again, the likelihood of error occurrence is significantly 
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decreased, allowing uninhibited growth of the TCP window; the fast start and larger 

maximum window properties provide significant advantages over standard TCP 

mechanisms.  

Research Question 3: What is the performance benefit of implementing both a 

SACK enhancement and a window scale modification to TCP when TCP is utilized 

over a satellite transmission system? 

The next research question, RQ3, asked for the performance benefit of using both 

the SACK and window scale modifications in a satellite transmission system.  From the 

results of the statistical analyses in Chapter 4, it was obvious that the combinational use 

of SACKs and window scale provided superior performance to TCP in almost every 

scenario (up to 109.30%).  The 10-6 BER scenarios, however, were one area in which the 

use of both SACKs and window scale did not provided a significant advantage 

(improvements of 1.76% and 8.49% for both test scenarios) versus use of standard TCP.  

This may represent a point of diminishing returns for the combinational TCP 

enhancement of SACKs and window scale, as bit errors in this experimentation were 

common enough to inhibit window growth, but evenly spread (due to the spanner 

program’s error distribution) to somewhat negate the advantage of the SACK technique’s 

single RTT identification/resolution of lost segments. 

Research Question 4: What is the performance benefit of utilizing PEPs to improve 

TCP sessions that occur over a satellite transmission system? 

 The fourth research question, RQ4, indicated the need for quantifying the benefits 

of a PEP system to the throughput performance of a satellite transmission system.  The 
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results of the experimentation showed that a PEP-based enhancement, through use of the 

SCPS-TP standard, to TCP sessions over a high latency/error transmission medium 

provided a tremendous level of throughput improvement regardless of the treatment 

levels of independent variables (such as BER or packet size).  The PEP solution provided 

a minimum improvement to throughput, as compared to TCP, of 125.76%; the upper 

bound of improvement experienced during the experimentation was 270.72%.  In 

comparison to the test results of the other enhancement techniques, the PEP-based 

solution provided, at a minimum, twice the performance benefit when compared to 

standard TCP.   

Answers to Research Question 5 Are there statistical differences between the 

respective TCP enhancements?  If so, how can costs (in terms of acquisition and 

support requirements) be expressed as a decision point for execution of a given TCP 

enhancement? 

 The final research question, RQ5, looks for the statistical differences between the 

TCP enhancement methods and for a cost/benefit analysis.  In all of the scenarios, the 

non-parametric tools used for analysis proved that a statistical difference existed between 

at least two of the enhancement methods with respect to throughput. Groupings, at a 95% 

confidence level, were made via use of descriptive statistics (with respect to throughput) 

to highlight which techniques differed and which performed at the same level.  In all of 

the scenarios, the PEP-based solution performed a significantly different level than the 

other methods.  As stated previously, the PEP approach also outperformed the other 

methods, making it the TCP enhancement solution of choice in consideration of 

throughput performance.  The remaining techniques did not vary greatly at the highest 
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levels of BER; though it was reasonable to group the SACK and window scale/SACK 

techniques in one group and window scale and TCP in another, neither group had a large 

difference between them in terms of throughput.  At the next level of BER (10-6), the 

groupings varied depending on the packet size utilized; the differences between the 

groupings, again, were not at a significantly different level.  At the remaining levels of 

BER, however, the techniques began to vary greatly.  The window scale and window 

scale/SACK techniques operated at levels greater than SACK or TCP, but less than the 

PEP solution.  The differences in performance between the window scale and window 

scale/SACK solutions did not vary greatly, making them second in terms of throughput 

performance to the SCPS-TP PEP.  Finally, at the remaining levels of BER, the SACK 

technique did not perform at levels much different than standard TCP, making its 

placement as the last alternative when compared to the other enhancement’s throughput 

performance. 

 In making a business case for any of the methods, it should be obvious that cost 

will be the overriding factor for any organization in terms of selection for use.  In this 

respect, it will be necessary to understand the lease costs of a satellite 

channel/transponder.  In the author’s experience, lease costs not only come from the 

organization that owns/operates a given space asset, but can also come from entities that 

govern frequency allocations/rights.  Typically termed landing rights, host nations for 

which a satellite communication link exists will typically require a tariff for use of a 

piece of the frequency spectrum.  In the Middle East and Europe, it was not uncommon 

for costs for a 1.544Mb/s link to exceed $1M per annum (in extreme cases, per month) 

when lease costs from the owner’s of the spacecraft were combined with the payment due 
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for host nation landing rights.  It is therefore recommended that bandwidth utilization 

should be high in order to maximize return on investment.  Obviously, a balancing act 

must occur with respect to satellite lease costs and costs for implementation of techniques 

used to maximize bandwidth utilization.  This balance could be represented by the 

inequality:  

S x T x ((BE/100) – (BU/100)) ≥ CPE  + (CA x T) (6) 

where 

   S = satellite lease costs, US dollars per unit time 

   T = unit of time 

BU = percentage of bandwidth utilization without  

            enhancement 

BE = percentage of potential bandwidth utilization  

           with enhancement 

CPE = cost of acquisition of TCP enhancement  

            method 

CA = costs associated with TCP enhancement  

         method (such as training) per unit time 

Equation 6 represents a justification for use of a TCP enhancement technique, in terms of 

dollars per a specified timeframe.  The left hand side of the inequality calculates the 

satellite lease costs per unit on unutilized bandwidth (based on the difference between the 

potential gains of the selected enhancement technique versus use of standard TCP) during 
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a specified timeframe.  The other side of the inequality determines the costs associated 

with an enhancement’s acquisition and recurring costs.  Obviously, anytime the satellite 

lease costs exceed that of a solution set for TCP enhancement, the enhancement should 

be acquired and utilized in order to maximize the return on investment concerning the 

satellite lease.  Conversely, if the enhancement solution costs exceed lease costs, the 

enhancement method should not be acquired. 

 This equation, however, cannot capture other factors, such as infrastructure 

support in terms of rack space availability or acceptability of size with respect to a 

deployment loading limitations.  As such, a flow chart has been constructed (see Figure 

31 to act as a decision aid, in addition to the above equation. 

 

Figure 31.  TCP Enhancement Selection Flow Chart  
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From the above figure, the initial flow chart question is concerned with cost justification.  

Obviously, if equation 6 is calculated to be favorable and the costs associated with a 

solution can be covered, the answer for this question will be yes.  Following the yes path, 

the next question asks about infrastructure support.  This means that power, rack space, 

and/or other physical requirements can be met for an enhancement strategy.  If yes, it is 

recommended that a PEP-based solution be employed.  If no, the follow up question asks 

if standard TCP enhancements (SACKs and window scale modifications) can be 

supported with existing equipment.  This question is also posed if the cost question for an 

enhancement strategy is answered negatively.  If the standard mechanisms can be 

implemented, it is recommended that either a window scale or window scale/SACK 

solution be implemented.  If the answer is no, then no enhancement should be 

implemented at this time. 

Model Validation 

 The results for the PEP piece of the experimentation were compared to those 

found in (Durst, Miller, and Travis, 1997) and (Ishac and Allman, 2001); though differing 

latency levels were used and data transfer mechanisms (the file transfer protocol was 

primarily used), as compared to this thesis work, it can be observed that nearly the same 

performance differences exist between TCP and a PEP-based solution.  This indicates 

that a level of model validity exists concerning this research.  In addition, the window 

scale modification results were similar to those found in (Allman, 1997), with the SACK 

results somewhat consistent with those found in (Allman, Hayes, Kruse, and Ostermann, 

1997).  The previous SACK experimentation showed improvement, as compared to TCP, 

throughout the progression of levels of BER; the experimentation work conducted in this 
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study showed limitations in performance benefit at BERs lower than 10-6.  The prior 

research did, however, make use of an actual satellite transmission system and a 

modeling environment that was closely matched to the satellite transmission system’s 

performance characteristics; this allowed a level of realism (such as error bursts, which 

were not encountered in this thesis work due to software error simulation limitations) not 

attained in this research and likely resulted in the performance result differences.   

Limitations 

It is of course necessary to restate the limitations identified prior to execution of 

this research and those discovered during the experimentation process.  First and 

foremost, it is obvious that use of modeling does not capture all of the idiosyncrasies, 

such as weather effects, solar disturbances, etc., of a live satellite transmission network 

(and associated network traffic); though use of such a transmission system would have 

been preferred,  access to military satellite resources would have required a considerable 

amount of flexibility with respect to time and availability due to on-going military 

operations and low level of precedence afforded to research over military spacecraft.  In 

addition, not all of the equipment (crypto gear, modems, multiplexers, etc.) used in 

conjunction with a satellite transmission were represented; the additional data processing 

time required for these devices may result in higher levels of latency, making the results 

of this experimentation somewhat inflated.  It is believed, however, that the processing 

time required for these middle boxes would be a minor addition to the latency 

encountered on the wireless transmission link.  Though the experimental model presented 

in this study may not be completely accurate, it does present findings and a methodology 

that can be built upon to further robust future research endeavors. 
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Future Research Recommendations 

 
There are several areas for improvement of this study that could lead to additional 

areas of study.  The most notable of these recommendations is the use of an actual 

military satellite communication system in tandem with a live network that makes use of 

a variety of network traffic that is representative of daily military operations.   This type 

of experimentation would capture a more thorough understanding of the performance of 

TCP enhancement mechanisms with respect to periods of error bursts on the satellite link, 

dynamic traffic loads, and the effect of middle boxes (such as multiplexers, fiber optic 

modems, etc.) have on data stream processing, in particular the time required to process 

and its effect on RTT calculations made by TCP and associated enhancement techniques.  

In lieu of access to an actual military communication system, it is recommended that 

other types of traffic flows (such as those that use the file transfer protocol and the hyper 

text transfer protocol) be conducted over a simulated network in order to gain insight to 

the performance gains experienced due to use of a TCP enhancement technique.  Finally, 

use of multiple clients should also be studied in order to ascertain the effect that multiple 

TCP pipes have when used with a TCP modification.   

Chapter Summary 

 
 The various methods of TCP modification demonstrated varying levels of 

performance improvement with respect to a standard TCP implementation.  The study 

results determined that a PEP-based solution, that makes use of the SCPS-TP standard, 

provided the greatest gains in terms of throughput performance.  The standard 

improvement mechanisms of window scale and window scale/SACK also provided 

significant improvement, but at a level much lower than SCPS-TP.  Finally, the SACK 
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technique provided greater performance, as compared to TCP, at high levels of BER, but 

did not perform in a manner that was significantly different from TCP at lower error 

rates.  From these results, it was possible to construct a decision inequality to aid satellite 

acquisition and planning personnel in the determination of whether or not to implement a 

TCP modification; study findings will also aid in the selection of a particular TCP 

modification technique. 
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Appendix A: Xiplink Mini-Gateway Configuration  

 
 

Figure 32.  SCPS10 Network Configuration 

 

Figure 33.  SCPS10 Basic Performance Configuration 
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Figure 34.  SCPS10 Advance Performance Configuration 

 

Figure 35.  SCPS20 Network Configuration  



 89

 

Figure 36.  SCPS20 Basic Performance Configuration  
 

 

Figure 37.  SCPS20 Advance Performance Configuration  
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Appendix B: Data Collection Scripts 

 
 The automation of the data collection for this thesis was made possible via use of 

a few simple scripts.  The primary script, CollectIt, was initiated on the server spanner 

and would establish the parameters (via execution of commands through the command 

line interface) for the spanner program.  In addition, the CollectIt script would also 

initiate SSH sessions with server netperfc in order to execute scripts (known as DoE5, 

DoE6, DoE7, DoE8, and DoE9) found on this remote server.  The scripts on netperfc 

executed Iperf commands that generated the TCP flows needed to gather the throughput 

data collected for each of the test scenarios.  The following sections provide the syntax 

for each of the scripts utilized during this experimentation. Please note that the 

ClientDone file mentioned in each of the scripts was a dummy file passed to indicate the 

completion of a testing scenario; the file contained no syntax of interest. 

CollectIt Script 

#!/bin/bash 
 
# Define functions used in this script 
 
kill_span () { 
kill -9 `ps | grep spanner | colrm 6 144` 
 
# kill bridges 
 
/sbin/ifconfig aif down 
/usr/sbin/brctl delbr aif 
/sbin/ifconfig bif down 
/usr/sbin/brctl delbr bif 
 
# restore routes   
 
/sbin/route add -net 192.168.1.0 netmask 255.255.255.0 dev eth0 
/sbin/route add -host 192.168.1.1 gw 192.168.1.3 dev eth0 
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} 
 
# Start main script 
 
echo Starting Data Collection at `date` 
 
# Set neg 5 error rate 
 
echo Starting NEG 5 at `date` 
 
# Make sure there are no running spanner instances 
 
kill_span 
 
# Make sure file flag erased 
 
/bin/rm -f /root/ClientDone 
 
# Run spanner in background with neg5 
 
/usr/local/src/SPANNER_II/spanner -I eth0 -R eth1 -d 0.285 -i 1544000 -r 1544000 -e 
0.00001 & 
 
# wait for spanner to start working properly 
 
sleep 10s 
route add -net 192.168.1.0 netmask 255.255.255.0 dev aif 
route add -host 192.168.1.1 gw 192.168.1.3 
sleep 10s 
 
# start remote data collection 
 
ssh netperfc /root/DoE5 
 
# wait until netperfc is done 
 
until test -f /root/ClientDone 
do 
        sleep 5m 
done 
 
# kill spanner 
 
kill_span 
 
# let things settle 
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sleep 5 
echo NEG 5 done at `date` 
 
# repeat 
 
# Set neg 6 error rate 
 
echo Starting NEG 6 at `date` 
 
# Make sure there are no running spanner instances 
 
kill_span 
 
# Make sure file flag erased 
 
/bin/rm -f /root/ClientDone 
 
# Run spanner in background with neg6 
 
/usr/local/src/SPANNER_II/spanner -I eth0 -R eth1 -d 0.285 -i 1544000 -r 1544000 -e 
0.000001 & 
 
# wait for spanner to start working properly 
 
sleep 10s 
route add -net 192.168.1.0 netmask 255.255.255.0 dev aif 
route add -host 192.168.1.1 gw 192.168.1.3 
sleep 10s 
 
# start remote data collection 
 
ssh netperfc /root/DoE6 
 
# wait until netperfc is done 
 
until test -f /root/ClientDone 
do 
        sleep 5m 
done 
 
# kill spanner 
 
kill_span 
 
# let things settle 
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sleep 5 
echo NEG 6 done at `date` 
 
# repeat 
 
# Set neg 7 error rate 
 
echo Starting NEG 7 at `date` 
 
# Make sure there are no running spanner instances 
 
kill_span 
 
# Make sure file flag erased 
 
/bin/rm -f /root/ClientDone 
 
# Run spanner in background with neg7 
 
/usr/local/src/SPANNER_II/spanner -I eth0 -R eth1 -d 0.285 -i 1544000 -r 1544000 -e 
0.0000001 & 
 
# wait for spanner to start working properly 
 
sleep 10s 
route add -net 192.168.1.0 netmask 255.255.255.0 dev aif 
route add -host 192.168.1.1 gw 192.168.1.3 
sleep 10s 
 
# start remote data collection 
 
ssh netperfc /root/DoE7 
 
# wait until netperfc is done 
 
until test -f /root/ClientDone 
do 
        sleep 5m 
done 
 
# kill spanner 
 
kill_span 
 
# let things settle 
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sleep 5 
echo NEG 7 done at `date` 
 
# repeat 
 
# Set neg 8 error rate 
 
echo Starting NEG 8 at `date` 
 
# Make sure there are no running spanner instances 
 
kill_span 
 
# Make sure file flag erased 
 
/bin/rm -f /root/ClientDone 
 
# Run spanner in background with neg8 
 
/usr/local/src/SPANNER_II/spanner -I eth0 -R eth1 -d 0.285 -i 1544000 -r 1544000 -e 
0.00000001 & 
# wait for spanner to start working properly 
sleep 10s 
route add -net 192.168.1.0 netmask 255.255.255.0 dev aif 
route add -host 192.168.1.1 gw 192.168.1.3 
sleep 10s 
 
# start remote data collection 
 
ssh netperfc /root/DoE8 
 
# wait until netperfc is done 
 
until test -f /root/ClientDone 
do 
        sleep 5m 
done 
 
# kill spanner 
 
kill_span 
 
# let things settle 
 
sleep 5 
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echo NEG 8 done at `date` 
 
# repeat 
 
# Set neg 9 error rate 
 
echo Starting NEG 9 at `date` 
 
# Make sure there are no running spanner instances 
 
kill_span 
 
# Make sure file flag erased 
 
/bin/rm -f /root/ClientDone 
 
# Run spanner in background with neg9 
 
/usr/local/src/SPANNER_II/spanner -I eth0 -R eth1 -d 0.285 -i 1544000 -r 1544000 -e 
0.000000001 & 
 
# wait for spanner to start working properly 
 
sleep 10s 
route add -net 192.168.1.0 netmask 255.255.255.0 dev aif 
route add -host 192.168.1.1 gw 192.168.1.3 
sleep 10s 
 
# start remote data collection 
 
ssh netperfc /root/DoE9 
 
# wait until netperfc is done 
 
until test -f /root/ClientDone 
do 
        sleep 5m 
done 
 
# kill spanner 
 
kill_span 
 
# let things settle 
 
sleep 5 
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echo NEG 9 done at `date` 
 
# repeat 
 
echo Done at `date` 
 

DoE5 Script 

# Script for executing E5 and 128k packet testing 
 
echo "E5 and 128K packet testing began at `date`" > Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 128k >> Results128kE5 
echo "E5 and 128K packet testing completed at `date`" >> Results128kE5 
 
# Script for executing E5 and 512k packet testing 
 
echo "E5 and 512K packet testing began at `date`" > Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
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iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
iperf -c 192.168.1.8 -t 300 -f k -l 512k >> Results512kE5 
echo "E5 and 512K packet testing completed at `date`" >> Results512kE5 
scp /root/ClientDone root@192.168.1.4:/root/ClientDone 

 

DoE6, DoE7, DoE8, and DoE9 Scripts 

 The scripts for the DeE6, DoE7, DoE8, and DoE9 scripts are nearly identical to 

that found in the DoE5 script; the only difference is the naming of the results file.  The 

results files were named so that the error rate utilized was the visual discriminator. 
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Appendix C: Research Data Set 

 
Table 31.  TCP (No Enhancement) Data Set for 128kb Packet Scenarios 

128kb Packet Scenario Throughput (kbps) Based on BER 
Enhancement Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09

TCP (No Enhancement) 39.5 186 387 418 430
TCP (No Enhancement) 40.9 196 360 430 433
TCP (No Enhancement) 44.1 183 339 414 433
TCP (No Enhancement) 40.2 194 346 427 433
TCP (No Enhancement) 21.1 159 365 429 430
TCP (No Enhancement) 44.8 178 349 426 433
TCP (No Enhancement) 38.4 190 344 418 430
TCP (No Enhancement) 40.8 200 341 428 433
TCP (No Enhancement) 42.0 168 373 420 430
TCP (No Enhancement) 39.3 177 341 428 433
TCP (No Enhancement) 40.1 186 372 422 430
TCP (No Enhancement) 42.2 176 336 428 433
TCP (No Enhancement) 40.2 177 389 414 430
TCP (No Enhancement) 41.9 171 340 430 433
TCP (No Enhancement) 42.8 188 357 420 433
TCP (No Enhancement) 36.4 154 357 421 433
TCP (No Enhancement) 43.0 164 373 421 430
TCP (No Enhancement) 41.3 184 375 423 433
TCP (No Enhancement) 39.5 191 390 418 430
TCP (No Enhancement) 37.6 178 383 425 430
TCP (No Enhancement) 44.2 163 358 417 430
TCP (No Enhancement) 43.2 167 359 430 433
TCP (No Enhancement) 43.4 157 373 430 430
TCP (No Enhancement) 44.3 180 343 427 433
TCP (No Enhancement) 43.0 182 371 428 433
TCP (No Enhancement) 42.0 176 355 421 433
TCP (No Enhancement) 40.6 167 340 434 430
TCP (No Enhancement) 40.4 197 345 425 433
TCP (No Enhancement) 42.0 171 374 423 430
TCP (No Enhancement) 40.1 177 336 426 433
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Table 32. TCP (No Enhancement) Data Set for 512kb Packet Scenarios 
512kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement 
Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 

TCP (No Enhancement) 40.4 183 343 430 430
TCP (No Enhancement) 40 180 358 429 434
TCP (No Enhancement) 42.7 174 382 424 433
TCP (No Enhancement) 40.5 177 349 419 434
TCP (No Enhancement) 43.6 182 372 429 430
TCP (No Enhancement) 42.6 191 335 426 430
TCP (No Enhancement) 39.4 171 376 426 434
TCP (No Enhancement) 39.1 176 348 419 430
TCP (No Enhancement) 39.1 181 346 426 434
TCP (No Enhancement) 38.4 159 323 415 433
TCP (No Enhancement) 38.4 185 338 422 434
TCP (No Enhancement) 42.2 158 381 426 429
TCP (No Enhancement) 39.7 184 369 430 434
TCP (No Enhancement) 44.7 172 361 425 430
TCP (No Enhancement) 41.3 178 347 430 434
TCP (No Enhancement) 41.2 167 369 420 429
TCP (No Enhancement) 42.5 194 343 429 434
TCP (No Enhancement) 39.8 159 384 424 429
TCP (No Enhancement) 42.8 182 373 425 434
TCP (No Enhancement) 44.7 164 385 430 429
TCP (No Enhancement) 42.1 169 344 427 434
TCP (No Enhancement) 39.2 167 358 430 430
TCP (No Enhancement) 42 168 337 426 434
TCP (No Enhancement) 42.9 165 370 421 430
TCP (No Enhancement) 39.4 169 323 426 429
TCP (No Enhancement) 40.6 171 343 427 434
TCP (No Enhancement) 41 172 379 430 430
TCP (No Enhancement) 40.6 173 355 422 434
TCP (No Enhancement) 42.5 174 371 430 430
TCP (No Enhancement) 38.5 197 363 429 429
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Table 33. SACK Data Set for 128kb Packet Scenarios 
128kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement 
Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 

SACK 45.8 189 366 420 430
SACK 48.3 169 391 424 429
SACK 51.2 176 383 418 433
SACK 49.6 201 398 425 433
SACK 48.9 182 389 417 433
SACK 49.3 186 372 425 430
SACK 45.4 178 379 417 433
SACK 49.2 158 391 419 430
SACK 46.5 181 373 425 431
SACK 54.3 171 393 423 430
SACK 48.6 192 380 423 431
SACK 50.4 195 387 426 429
SACK 48.0 170 391 418 431
SACK 48.6 172 372 427 429
SACK 49.6 181 375 419 433
SACK 54.1 175 389 421 430
SACK 43.4 188 394 421 430
SACK 48.2 190 383 428 430
SACK 46.9 204 379 419 431
SACK 52.5 171 384 419 430
SACK 48.4 176 371 426 430
SACK 48.8 175 368 419 430
SACK 51.4 188 394 419 430
SACK 46.3 172 371 423 430
SACK 47.5 193 378 417 430
SACK 53.6 165 397 420 433
SACK 44.3 179 392 424 430
SACK 51.8 173 378 419 433
SACK 46.5 191 367 424 429
SACK 53.6 177 389 422 433
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Table 34. SACK Data Set for 512kb Packet Scenarios 
512kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement 
Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 

SACK 47.6 163 373 419 430
SACK 51.1 183 390 420 434
SACK 49.7 173 365 428 430
SACK 47.2 199 368 416 434
SACK 49.3 165 390 426 430
SACK 49.8 192 382 422 434
SACK 49.0 177 384 424 430
SACK 50.8 181 370 423 434
SACK 49.3 182 389 421 429
SACK 50.2 189 373 418 434
SACK 47.0 190 370 423 429
SACK 48.1 184 382 419 434
SACK 49.3 184 371 423 430
SACK 46.2 178 379 420 434
SACK 46.3 184 386 423 430
SACK 54.7 182 376 428 434
SACK 49.3 176 383 427 430
SACK 51.6 182 378 419 434
SACK 49.6 188 373 423 430
SACK 45.7 191 384 423 434
SACK 51.9 177 388 423 430
SACK 51.5 191 376 420 434
SACK 49.7 190 387 419 433
SACK 46.9 178 390 420 434
SACK 49.0 163 382 427 434
SACK 51.0 179 390 420 432
SACK 47.2 174 385 419 434
SACK 45.6 181 389 430 430
SACK 49.5 187 376 426 434
SACK 46.8 215 366 428 430
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Table 35. SCPS-TP Data Set for 128kb Packet Scenarios 
128kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement 
Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 

SCPS-TP 167.0 290 248 1421 545
SCPS-TP 124.0 427 1208 1422 1446
SCPS-TP 151.0 424 1183 1434 1444
SCPS-TP 170.0 454 1201 1431 1443
SCPS-TP 164.0 417 1180 1446 1444
SCPS-TP 184.0 429 1188 1425 1445
SCPS-TP 147.0 457 1223 1422 1444
SCPS-TP 155.0 463 1184 1433 1444
SCPS-TP 151.0 458 1225 1410 1445
SCPS-TP 127.0 404 1232 1431 1444
SCPS-TP 141.0 423 1181 1420 1444
SCPS-TP 143.0 453 1229 1434 1443
SCPS-TP 157.0 409 1238 1421 1446
SCPS-TP 198.0 380 1143 1434 1445
SCPS-TP 167.0 248 1196 1426 1444
SCPS-TP 183.0 475 1151 1441 1444
SCPS-TP 158.0 428 1199 1420 1443
SCPS-TP 170.0 473 1140 1430 1445
SCPS-TP 166.0 408 1183 1434 1445
SCPS-TP 96.1 387 1145 1439 1444
SCPS-TP 195.0 437 1186 1415 1445
SCPS-TP 148.0 394 1219 1426 1442
SCPS-TP 163.0 415 1214 1419 1443
SCPS-TP 91.0 430 1182 1426 1446
SCPS-TP 109.0 403 1157 1432 1443
SCPS-TP 89.1 424 1219 1423 1444
SCPS-TP 146.0 405 1163 1414 1444
SCPS-TP 169.0 247 1147 1425 1441
SCPS-TP 146.0 413 1194 1416 1443
SCPS-TP 145.0 174 1178 1413 1444
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Table 36. SCPS-TP Data Set for 512kb Packet Scenarios 
512kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 
SCPS-TP 166.0 401 1188 1427 1444
SCPS-TP 156.0 410 1234 1423 1445
SCPS-TP 145.0 394 1237 1432 1376
SCPS-TP 117.0 442 1130 1408 1447
SCPS-TP 165.0 441 1166 1432 1443
SCPS-TP 171.0 344 1155 1430 1444
SCPS-TP 163.0 430 1171 1433 1442
SCPS-TP 151.0 230 1202 1420 1444
SCPS-TP 127.0 400 1173 1435 1443
SCPS-TP 174.0 264 1193 1417 1447
SCPS-TP 164.0 293 1140 1415 1444
SCPS-TP 148.0 436 1214 1435 1445
SCPS-TP 158.0 412 1211 1428 1446
SCPS-TP 168.0 403 1202 1403 1444
SCPS-TP 141.0 463 1155 1435 1447
SCPS-TP 91.2 414 1175 1420 1441
SCPS-TP 139.0 452 1202 1422 1445
SCPS-TP 124.0 415 1201 1418 1445
SCPS-TP 174.0 405 1207 1415 1445
SCPS-TP 138.0 432 1123 1418 1445
SCPS-TP 157.0 425 1217 1432 1440
SCPS-TP 157.0 405 1203 1427 1445
SCPS-TP 190.0 426 1113 1421 1443
SCPS-TP 154.0 448 1199 1429 1444
SCPS-TP 121.0 492 1214 1438 1445
SCPS-TP 164.0 445 1174 1426 1447
SCPS-TP 149.0 483 1125 1446 1443
SCPS-TP 161.0 429 1158 1420 1443
SCPS-TP 130.0 379 1226 1432 1445
SCPS-TP 147.0 140 285 1427 1444
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Table 37. Window Scale Data Set for 128kb Packet Scenarios 
128kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 
Window Scale 42.6 190 558 901 902
Window Scale 42.5 202 609 901 901
Window Scale 40.8 197 528 901 901
Window Scale 43.7 188 601 901 902
Window Scale 40.3 187 472 901 901
Window Scale 42.4 198 551 901 901
Window Scale 38.5 168 445 901 901
Window Scale 43.5 218 592 901 901
Window Scale 44.9 171 486 901 901
Window Scale 40.8 208 490 901 902
Window Scale 38.8 158 557 901 901
Window Scale 41.7 173 606 901 901
Window Scale 39.3 213 564 901 901
Window Scale 42.2 187 507 902 901
Window Scale 39.5 177 483 901 901
Window Scale 44.3 205 620 901 901
Window Scale 45.0 200 432 901 901
Window Scale 42.9 181 600 902 901
Window Scale 39.0 179 567 901 901
Window Scale 44.4 203 526 901 901
Window Scale 44.7 190 595 901 901
Window Scale 42.9 179 434 901 901
Window Scale 39.9 189 504 901 901
Window Scale 42.5 197 595 901 901
Window Scale 43.8 167 556 901 901
Window Scale 40.8 195 588 901 901
Window Scale 41.8 189 528 901 901
Window Scale 42.7 189 568 901 901
Window Scale 37.8 191 519 901 901
Window Scale 39.6 178 488 901 901
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Table 38. Window Scale Data Set for 512kb Packet Scenarios 
512kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 
Window Scale 40.2 184 515 904 904
Window Scale 41.2 178 449 904 904
Window Scale 41.0 151 480 904 904
Window Scale 42.0 163 516 904 904
Window Scale 43.6 172 609 904 904
Window Scale 39.6 167 515 904 904
Window Scale 41.5 164 652 903 904
Window Scale 44.6 211 458 904 904
Window Scale 42.1 195 516 904 904
Window Scale 43.6 174 480 904 904
Window Scale 42.6 192 555 904 904
Window Scale 41.9 206 581 904 904
Window Scale 44.1 156 639 904 904
Window Scale 40.3 163 536 904 904
Window Scale 43.3 184 547 904 904
Window Scale 43.8 176 527 904 904
Window Scale 41.8 177 566 904 904
Window Scale 39.3 164 505 904 904
Window Scale 41.2 174 576 904 904
Window Scale 46.1 178 515 904 904
Window Scale 39.9 180 538 904 904
Window Scale 40.4 177 491 904 904
Window Scale 40.8 212 639 904 904
Window Scale 40.4 174 488 904 904
Window Scale 40.5 199 506 904 904
Window Scale 39.9 195 560 904 904
Window Scale 42.2 197 576 904 904
Window Scale 44.7 194 501 904 904
Window Scale 41.2 187 516 904 904
Window Scale 46.4 197 556 864 904
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Table 39. Window Scale/SACK Data Set for 128kb Packet Scenarios 
128kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 
Window Scale/SACK 48.3 191 660 833 901
Window Scale/SACK 48.3 181 664 835 902
Window Scale/SACK 46.4 174 570 850 902
Window Scale/SACK 47.6 154 600 799 901
Window Scale/SACK 50.4 203 564 810 901
Window Scale/SACK 48.9 174 653 832 901
Window Scale/SACK 51.2 171 607 830 901
Window Scale/SACK 51.2 184 669 849 901
Window Scale/SACK 49.2 189 596 828 901
Window Scale/SACK 49.7 169 661 818 901
Window Scale/SACK 49.4 180 570 816 901
Window Scale/SACK 52.3 166 674 815 901
Window Scale/SACK 47.7 178 629 829 901
Window Scale/SACK 55.7 169 644 846 901
Window Scale/SACK 47.0 194 631 845 901
Window Scale/SACK 44.6 157 589 840 901
Window Scale/SACK 49.5 204 631 820 901
Window Scale/SACK 47.9 173 589 782 901
Window Scale/SACK 47.5 206 664 835 901
Window Scale/SACK 49.8 186 568 860 901
Window Scale/SACK 52.0 178 685 819 901
Window Scale/SACK 51.7 175 622 838 901
Window Scale/SACK 49.6 183 640 830 901
Window Scale/SACK 50.5 172 592 844 901
Window Scale/SACK 52.3 198 633 873 901
Window Scale/SACK 49.4 179 574 834 901
Window Scale/SACK 53.6 213 630 812 901
Window Scale/SACK 50.9 173 597 848 901
Window Scale/SACK 44.1 195 632 815 901
Window Scale/SACK 48.1 162 593 817 901
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Table 40. Window Scale/SACK Data Set for 512kb Packet Scenarios 
512kb Packet Scenario Throughput (kbps) Based on BER 

Enhancement Technique 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 
Window Scale/SACK 46.9 181 578 822 904
Window Scale/SACK 47.2 185 566 849 904
Window Scale/SACK 52.7 181 620 791 904
Window Scale/SACK 49.8 170 584 824 904
Window Scale/SACK 45.1 165 599 863 904
Window Scale/SACK 49.3 193 601 849 904
Window Scale/SACK 46.9 195 622 861 904
Window Scale/SACK 51.6 188 590 855 904
Window Scale/SACK 51.6 197 577 824 904
Window Scale/SACK 47.2 176 623 854 904
Window Scale/SACK 56.0 226 545 831 904
Window Scale/SACK 48.7 208 607 823 904
Window Scale/SACK 50.4 199 618 825 904
Window Scale/SACK 47.7 163 669 820 904
Window Scale/SACK 44.8 196 645 845 904
Window Scale/SACK 50.4 191 562 839 904
Window Scale/SACK 48.0 192 634 805 904
Window Scale/SACK 46.8 179 586 844 904
Window Scale/SACK 54.1 186 608 833 904
Window Scale/SACK 50.3 184 567 841 904
Window Scale/SACK 48.8 175 611 856 904
Window Scale/SACK 50.2 213 628 836 904
Window Scale/SACK 45.6 206 623 837 904
Window Scale/SACK 53.2 190 593 849 904
Window Scale/SACK 45.0 181 564 845 904
Window Scale/SACK 47.5 196 630 844 904
Window Scale/SACK 50.4 191 622 817 904
Window Scale/SACK 47.2 197 640 838 904
Window Scale/SACK 48.6 169 593 856 904
Window Scale/SACK 48.5 214 636 771 904

 
 
 
 
 
 
 
 
 
 
 
 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
23-03-2006 

2. REPORT TYPE  
Master’s Thesis     

3. DATES COVERED (From – To) 
Apr 2005 – Apr 2006 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
      A Comparative Analysis of Transmission Control Protocol Improvement Techniques Over Space-       
      Based Transmission Media 
   
 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Lawson, Joseph M., Captain, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
     Air Force Institute of Technology 
    Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way 
     WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GIR/ENV/06M-08 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
     N/A 

11.  SPONSOR/MONITOR’S 
REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
14. ABSTRACT  
The purpose of this study was to assess the throughput improvement afforded by the various TCP optimization techniques, with respect to a simulated 
geosynchronous satellite system, in order to provide a cost justification for the implementation of a given enhancement technique.  The research questions 
were answered through model and simulation of a satellite transmission system via a Linux-based network topology; results of the simulation were analyzed 
primarily via a non-parametric method to ascertain performance differences between the various TCP optimization techniques.  It was determined that each 
technique studied, which included the Space Communication Protocol Standard – Transport Protocol (SCPS-TP), window scale, selective acknowledgements 
(SACKs), and combinational use of the window scale and SACK mechanisms, provided varying levels of improvement as compared to a standard TCP 
implementation.   In terms of throughput, SCPS-TP provided the greatest overall improvement, with window scale and window scale/SACK techniques 
providing significant benefits at low levels of bit error rate (BER).  The SACK modification improved throughput performance at high levels of BER, but 
performed at levels comparable to standard TCP during scenarios with lower BER levels.  These findings will be of assistance to communications planners in 
deciding whether or not to implement a given enhancement or deciding which technique to utilize. 
15. SUBJECT TERMS 
       Networks, Satellite Communications, Satellite Networks, Internet, Communications Protocols, 
       Wireless, Transmission Control Protocol, Selective Acknowledgements, Window Scale,  
       Space Communication Protocol Standard-Transport Protocol, Performance Enhancing Proxies.                                                            
16. SECURITY CLASSIFICATION 
OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Michael R. Grimaila, ENV 

REPORT 
U 

ABSTRACT 
U 

c. THIS PAGE 
U 

17. LIMITATION OF  
     ABSTRACT 
 
UU 

18. NUMBER  
      OF 
      PAGES 
121 19b.  TELEPHONE NUMBER (Include area code) 

(937) 255-3636, ext 4800; e-mail:  Michael.Grimaila@afit.edu 

Standard Form 298 (Rev: 8-98) 
Prescribed by ANSI Std. Z39-18 
 

 
 


